x1 +3x2 +x3 2x1 +3x2 -x3 x1 -x2 +x3
+x4 +x5 +x6
=15 =18 =3
基变量x1、x2、x4,非基变量x3、x5、x6
x1 +3x2 +x4 2x1 +3x2 x1 -x2基解为
=15 =18 =3
(x1,x2,x3,x4,x5,x6)=(27/5,12/5,0,2/5,0,0) 是基可行解,表示可行域的一个顶点。目标函数值为:z=18
x1 +3x2 +x3 2x1 +3x2 -x3 x1 -x2 +x3
+x4 +x5 +x6
=15 =18 =3
基变量x1、x2、x4,非基变量x3、x5、x6
x1 +3x2 +x4 2x1 +3x2 x1 -x2基解为
=15 =18 =3
(x1,x2,x3,x4,x5,x6)=(27/5,12/5,0,2/5,0,0) 是基可行解,表示可行域的一个顶点。目标函数值为:z=18