x1 +3x2 +x3 2x1 +3x2 -x3 x1 -x2 +x3
+x4 +x5 +x6
=15 =18 =3
基变量x1、x2、x5,非基变量x3、x4、x6
x1 +3x2 2x1 +3x2 +x5 x1 -x2基解为
=15 =18 =3
(x1,x2,x3,x4,x5,x6)=(6,3,0,0,-3,0)
是基解,但不是基可行解,不是一个顶点。
x1 +3x2 +x3 2x1 +3x2 -x3 x1 -x2 +x3
+x4 +x5 +x6
=15 =18 =3
基变量x1、x2、x5,非基变量x3、x4、x6
x1 +3x2 2x1 +3x2 +x5 x1 -x2基解为
=15 =18 =3
(x1,x2,x3,x4,x5,x6)=(6,3,0,0,-3,0)
是基解,但不是基可行解,不是一个顶点。