四川理工学院本科毕业(设计)论文
第1章 引 言
1.1 倒立摆研究的目的及意义
在控制理论发展的过程中, 一种理论的正确性及在实际应用中的可行性,往往需要一个典型对象来验证, 并比较各种控制理论之间的优劣, 倒立摆系统就是这样的一个可以将理论应用于实际的理想实验平台。倒立摆的典型性在于: 作为实验装置, 它本身具有成本低廉、结构简单、便于模拟、形象直观的特点。 作为被控对象, 它是一个高阶次、不稳定、多变量、非线性、强耦合的复杂被控系统, 可以有效地反映出控制中的许多问题。作为检测模型, 该系统的特点与机器人、飞行器、起重机稳钩装置等的控制有很大的相似性。也是日常生活中所见到的任何重心在上、支点在下的控制问题的抽象。根据倒立摆系统的类型分,有以下下几类:平面摆、平行式倒立摆、柔性摆、球平衡式倒摆和悬挂式倒立摆系统;根据倒立摆的运动轨道可以分为水平式和倾斜式的两种;根据倒立摆的级数可以分为:一级倒立摆、二级倒立摆、三级倒立摆和多级倒立摆。日常生活中,有很多控制问题和倒立摆有很大的相似性,如卫星发射架的稳定控制、火箭姿态控制、飞机安全着陆、机器人双足行走机构、海上钻井平台的稳定控制等等诸多重心在上,支点在下的控制问题;对现代控制理论教学来说,倒立摆模型也是一个相当理想的实验模型,因为倒立摆原理清晰、结构简单,也易于实现,而且有现成的、成熟的产品可以直接作为控制领域研究的被控对象,其作为典型的多输入系统,可用来研究诸如系统建模、系统辨识、现代控制理论、快速控制理论等控制理论中许多方面的问题;在现代控制理论研究中,由于倒立摆的高阶次、非线性、快速、多变量、强藕合、不稳定特性,现代控制理论研究人员一直用它来描述非线性控制领域中的无源性控制、变结构控制、非线性模型降阶、自由行走、非线性观测器等控制思想和对线性控制领域中不稳定系统的稳定性研究,不断从中发掘出新的控制方法和控制理论,对应的研究成果也在机器人和航空航天等方面得到了广泛的应用。因此,倒立摆机理的研究又具有重要的应用价值,成为控制理论中经久不衰的研究课题。因而对倒立摆的研究具有重要的工程背景和实际意义。
1
何安林: 二级倒立摆系统建模与仿真
1.2 倒立摆的发展史和研究现状
早在 20世纪 60年代, 人们就开始了对倒立摆系统的研究。1966年 Schaefer和 Cannon应用 Bang2 Bang控制理论, 将一个曲轴稳定于倒置位置。自从倒立摆系统成为[1]自动控制领域控制实验室的实验和教学工具以来,人们对倒立摆控制的研究既有理论研究又有实验研究。通过计算机仿真的方法对控制理论和控制方法的进行可行性研究;实验研究主要是解决仿真结果和实时控制之间性能差异的物理不确定性。
在 1972 年,Stugne 等人采用全维状态观测器来重构了状态,并使用线性控制模拟电路实现了二级倒立摆的控制,倒立摆的线性状态反馈采用极点配置的方法获得。1978 年,K. furutat 等人成功地应用降维观测器重构了倒立摆系统的状态,使用计算机处理实现了对三级倒立摆的控制。1984 年,K.furutat 等人又实现了三级倒立摆的稳定控制。1986 年,Chung 等人对一级倒立摆系统进行了系统辨识,并设计了 PD 反馈控制器和自适应自整定反馈控制器实现了对倒立摆的稳定控制[1]。1989 年,Anderson 等人运用函数最小化和 LyaPunov 稳定方法成功产生了一个优化反馈控制器。1994 年,sinha等人,利用 Lyapunov—Floquet 变换得到了三级倒立摆系统的计算机仿真模型[2]。1995 年,任章等人在一种镇定倒立摆系统的新方法中应用振荡控制理论,在倒立摆支撑点的竖直方向上加入一个零均值的高频振荡信号,改善了倒立摆系统的稳定性。1996 和 1997 年,翁正新等人利用带观测器的 Hao 状态反馈控制器对二级倒立摆系统在水平和倾斜导轨上进行了仿真控制。1998年,蒋国飞等人将 BP 神经网络和 Q 学习算法有效结合,实现了倒立摆的无模型学习控制。2001 年,单波等人使用基于神经网络的预测控制算法对倒立摆进行了控制仿真。2000 年,刘妹琴等人用进化 RBF 神经网络控制二级倒立摆。2001 年,李洪兴在变论域自适应模糊控制学术报告中使用变论域自适应模糊控制的思想在国际上首次实现了四轴倒立摆的仿真。同年张葛祥等人建立了三级倒立摆的数学模型,并分析了系统的可控制性和可观测性,给出了智能控制算法的思路。对单级倒立摆系统的实验最早出现在 Roberge 的论文中。l976 年 Mori等人设计了一个组合控制器,实现了倒立摆的自动起摆和倒立摆起摆后的稳定控制[3]。1995 年 wei 等人利用 bang-bang 非线性控制器也实现了倒立摆的自动起摆和倒立摆起摆后的稳定控制。1996 年,
2
四川理工学院本科毕业(设计)论文
张乃尧等人使用双闭环模糊控制实现了对倒立摆的稳定控制。1995 年,程福雁等人利用参变量模糊控制实现了对二级倒立摆实时稳定控制。1999 年张飞舟等人采用拟人智能控制,实现了一、二、三级倒立摆的稳定控制。1999 年,李德毅等人利用云控制方法成功实现了一、二、三级倒立摆的多种不同平衡姿态的控制。1999 年,李岩等人运用基于 PD 控制的专家智能控制对二级倒立摆进行实时控制,取得了很好的效果[6]。2000 年,杨亚炜等人利用拟人智能控制成功实现了在倾斜导轨上三级倒立摆的稳定控制,并可以控制三级倒立摆沿水平或倾斜导轨自由行走。1995 年,张明廉等人应用拟人智能控制方法实现三级倒立摆的稳定控制。2002 年北京师范大学李洪兴教授采用变论域自适应模糊控制方法在国际上首次成功实现了四级倒立摆实物控制系统。目前,人们对倒立摆的研究越来越多,倒立摆的类型也由简单的单级倒立摆发展为多种多样的形式,出现了柔性摆、球摆、旋转式倒立摆、倾斜轨道式倒立摆等。目前,对倒立摆的控制方法主要有以下几种:
(1)状态反馈控制[7]。基于倒立摆的动力学模型,使用状态空间理论推导出状态方程和输出方程,应用状态反馈,实现对倒立摆的控制。常见的利用状态反馈的方法有:1)线性二次型最优控制;2)极点配置[9];3) 状态反馈∞H 控制[19];4)鲁棒控制。
(2)PID 控制。基于倒立摆的动力学模型,使用状态空间理论推导出其非线性模型,再在平衡点处进行线性化得到倒立摆系统的状态方程和输出方程,根据倒立摆系统的状态方程和输出方程设计出 PID 控制器,实现对倒立摆的控制。
(3)云模型控制[10]。云模型是一种拟人控制,用云模型构成语言值,用语言值构成规则,形成一种定性的推理机制。这种控制不需要系统数学模型,而是根据人的经验、逻辑判断和感受,通过语言原子和云模型转换到语言控制规则器中,解决非线性问题和不确定性问题。
(4)自适应控制。许多控制系统多为静态控制,自适应控制随着环境的变化而变化,属于一种动态控制系统,从而提高控制精度。
(5)非线性控制[11]。实际系统多被进行线性化处理,非线性系统更能准确反映实际系统,对提高系统控制精度具有更大意义。
3
何安林: 二级倒立摆系统建模与仿真
(6)神经网络控制[12]。神经网络能够学习与适应严重不确定性系统的动态特性,任意充分地逼近复杂的非线性关系,所有定量或定性的信息都等势分布贮存于网络内的各种神经元,故有很强的鲁棒性和容错性;也可将 Q学习算法和 BP 神经网络有效结合,实现状态未离散化的倒立摆的无模型学习控制。
(7)采用遗传算法与神经网络相结合的方法[13]。基于倒立摆数学模型设计出神经网络控制器,再利用改进的遗传算法训练神经网络的权值,从而实现对倒立摆的控制。
(8)模糊控制[14]。主要是确定模糊规则设计出模糊控制器,实现对倒立摆的控制。
1.3本文的主要工作
本文针对二级倒立摆系统的单输入三输出的不稳定系统,采用三回路PD控制方案。并且利用MATLAB软件来判断系统的稳定性、能观、能控,并进行仿真。重点利用状态反馈系统的极点配置来整定PD控制器参数的思路[15],可以通过对控制器的设置来确定小车稳定时的位置,并通过多组极点的配置来相比较得出控制效果较好的参数。
4