2013高考二轮28讲答案(第1---8讲)
exa1?x?x?aex 1.(1)解 依题意,对一切x?R有f(x)?f(?x),即.
aeae所以?a?2??1??x1??e?xa??e1?x?Ra??0, 对一切成立,由此得到?0?a?即,a?1,又因为a>0,所以a=1 (2)证明 设0?x1?x2,
11xx f?x1??f?x2??e?e?x?x?e1?e2e1e2x1x2??x?x?1?x2x11?e12 ?x1?x2?1??e?ex1?x2e?e??? 由x1,x2.?0,x2?x1?0得ex1?x2?1,ex2?ex1?0
?f?x1??f?x2??0,即f(x)在?0,???上是增函数.
2.(1)由x?2?0?x?2或x??2,x?2?x?2?0又?且p?2p?x?0?
?2,p??2?x?p,故f(x)与g(x)的公共定义域为??p?2?2?p?2?2?(2)F(x)?f(x)?g(x)?log2??x?2??p?x???log2???x??????(2 2??4??????p?2??p?2??令u(x)???x?????24???? ?p?2 p?2p?2?p?,抛物线u(x)的对称轴x?22p?2当p?6时,??2,p?2(Ⅰ) 2?p?2??值域为???,2log?p?2??2??0?u(x)?2422 6 2013高考二轮28讲答案(第1---8讲) p?2?2,u(x)在?2,p?上有0?u(x)?4(p?2)2 ?g(x)?log2?4(p?2)??2?log2?p?2?(2)当2?p?6时,即?值域为???,2?log2?p?2??3.证明(1)设x1,x2???1,???,且x1?x2 f?x2??f?x1??ax2?ax1?x2?2x1?23?x2?x1? ??ax2?ax1??x1?1??x2?1?x2?1x1?1?x2?x1,a?1?ax2?ax1?0,x2?x1?0, ?x1,x2???1,?????x1?1??x2?1??0 综上有f?x2??f?x1??0即f(x)在??1,???上为增函数 (2)设存在x0?0?x0??1?,使f?x0??0 则ax0??x0?21x,且0?a0?1即?x0?2这与x0?0矛盾 2x0?1故方程f(x)?0无负根 冲刺强化训练(3) 1. D 2. C 3. B 4. ?0,? 5. 或 6. ??2,2? 22?4?7.?1?由已知得??1?13?log2?a?b??1?a?b?2?a?4 ??2??222?log2a?b?12?a?b?12?b?2??(2)由(1)得f(x)?log24?2?xx? 1?1? 令t?4?2??2x??? 2?4?xx2 7 2013高考二轮28讲答案(第1---8讲) 9?1?492?1?x?2?2?2x?4?4???2x?2???4?2?t?12 又y?log2t在t??2,12?递增?x?4时,ymax?log212?2?log23?f(x)在??1,1?上递增8.(1)?不等式f?a?1??f?1?a2?等价于 ???1?a?1?1?0?a?2??1?1?a2?1????2?a?2?0?a?1??a?1?1?a2???2?a?1(2)?0?a?1?不等式loga?ax?1??log??a1等价于logaax?1?0?0?ax?1?1 ?1?ax?2?loga2?x?0?原不等式的解集为:?loga2,0?9.(1)令t=x2?4mx?4m2?m?1m?1 则t=?x?2m?2?m?11m?1若m>1,则 m?1?0 ?t?0 若 t>0, ???4m?2?4??4m2?m?1??4?m2?m?1??m?1???m?1?01?2?m2?m?1????m?2?3??4?0 ?m?1即m?M (2)当m?M时 t??x?2m?2?m?11m?1?m?m?1?x?2m时取等号? 又函数y?log3t在定义域上递增?x?2m时,f(x)有最小值log?3?m?1??m?1?? 8 则 2013高考二轮28讲答案(第1---8讲) 11?m?1??1m?1m?11(3)又m?1?m?1??2?m?2时取等号?又函数y?log3x在定义域上递增 m?11?m??3m?1?m? 1???log3?m???1, ∴对每一个m?M,函数f(x)的最小值都不小于1. m?1??第4讲 解不等式 【课前热身】 1、B 2、B 3、C 4、-2 (-5,5) 5、(-1,0) 【例题探究】 ?x2?x?2?0?2x?1?01. 解:原不等式可化为log1(x?x?2)?log1(2x?2)?? 22?x2?x?2?2x?2??(x?2)(x?1)?0?x?2???x?1?0???2?x?3 ?0?x?3?x2?3x?0?2.解:(1)g(x)?f(x?4)?2?x?2?1 x?4?(x?3)21??0?x?2??0x?4?9?x?4logg(x)?log(a?1) (2) ????9aa19(x?6)(x?)2?x?2???2?0x?42??x?4?x?4?9?9????x?6 x?4或?x?62?2?9∴a?1时原不等式的解集为{x|?x?6} 23.解:(1)原不等式等价于(ax?2)(x?1)?0 9 2013高考二轮28讲答案(第1---8讲) ①a?0时 x??1 ②a?0时 x??1或x?由于 2 a2a?22?(?1)?,于是当?2?a?0时?x??1 aaa2 a③ a??2时解集为空集 ④ 当a??2时?1?x??a2?2?0 即a?1 (2)∵x??a时,不等式成立 ∴ ?a?1 冲刺强化训练(4) 1、B 2、B 3、B 4、???,?b???2,??? 5、2a?1,a6、(?5,??) 7、解:①若0?a??2? 5?111?51?5,则原不等式的解集为(?,)?(,??); 2a225?11?5②若a?,则原不等式的解集为(,??); 22③若a?5?11?511?5,则原不等式的解集为(,?)?(,??) 22a28、解:(1)由2?x?3x?1?0??0?x??1或x?1 ?A?{x|x??1或x?1} x?1x?1 (2)(x?a?1)(2a?x)?0?(x?a?1)(x?2a)?0 ?a?1 ∴a?1?2a ∴ B?(2a,a?1) ∵ B?A ∴ 2a?1或a?1??1 即a?而a?1 ∴ 1或a??2 21?a?1或a??2 29、解:(1)将x1?3,x2?x?12?0 x2?4分别代入方程 ax?b10