23.选修4-5:不等式选讲 设函数f(x)?|x?a|,a?0. (1)证明:f(x)?f(?)?2; (2)若不等式f(x)?f(2x)?
1x1的解集是非空集,求a的范围. 2试卷答案
1-12 DABCC AADDA BC 13. 10 14. 17. 解:向量
?634? 15. 16. [?3e?4,1){?e?2}
92m?(3sin?x,1),n?(cos?x,cos2?x?1),
f(x)?m?n?b?3sin?xcos?x?cos2?x?1?b
313?3?sin2?x?cos2?x??b?sin(2?x?)??b22262(1)∵函数f(x)图象关于直线x?∴2???6
对称,
?6??6?k???2(k?Z),解得:??3k?1(k?Z),∵??[0,3],∴??1, 3????b,由2k???2x??2k??, 2262∴f(x)?sin(2x?解得:k???6)??3?x?k???6(k?Z),
所以函数f(x)的单调增区间为[k??,k??](k?Z).
36?37?], (2)由(1)知f(x)?sin(2x?)??b,∵x?[0,6212??4?], ∴2x??[,663∴2x????[,],即x?[0,]时,函数f(x)单调递增; 6626??4??7?2x??[,],即x?[,]时,函数f(x)单调递减.
663612????又f(0)?f(),
?37??)或f()?0时函数f(x)有且只有一个零点.
31264?35?3??b??sin即sin或1??b?0, 3262∴当f()?0?f(所以满足条件的b?(?2,?3?35]{?}. 2218.(1)证明:取SA中点F,连接EF,FD,
∵E是边SB的中点,∴EF//AB,且EF?1AB, 21F?CD,∴EF//CD,且E
2∴四边形EFDC为平行四边形,∴FD//EC,又FD?面SAD,CE?面SAD,∴CE∥面SAD. (2)解:在底面内过点A作直线AM//BC,则AB?AM,又SA?平面ABCD, D?AB又∵?ABC??BCD?90,∴AB//CD,又∵AB?2CD,即C以AB,AM,AS所在直线分别为x,y,z轴,建立空间直角坐标系,如图.
设AB?2,则A(0,0,0),B(2,0,0),C(2,2,0),D(1,2,0),E(1,0,1), 则BC?(0,2,0),BE?(?1,0,1),CD?(?1,0,0),CE?(?1,?2,1),
??2y?0?n?BC?0BCE设面的一个法向量为n?(x,y,z),则?,即?
?x?z?0???n?BE?0令x?1,则z?1,∴n?(1,0,1).
同理可求面DEC的一个法向量为m?(0,1,2),cos?n,m??由图可知,二面角D?EC?B是钝二面角, 所以其平面角的余弦值为?19.
n?m10, ?5|n||m|10. 5
解:(1)由题意得:??m?0.4?n?1,
?110m?120?0.4?170n?120得:m?0.5,n?0.1.
(2)?2的可能取值为41.2,117.6,204.0,
P(?2?41.2)?(1?p)[1?(1?p)]?p(1?p)
P(?2?117.6)?p[1?(1?p)]?(1?p)(1?p)?p2?(1?p)2 P(?2?204.0)?p(1?p)
所以?2的分布列为
?2 P (3)由(2)可得:
41.2 117.6 204.0 p(1?p) p2?(1?p)2 p(1?p) E(?2)?41.2?p(1?p)?117.6?[p2?(1?p)2]?204.0?p(1?p) ??10p2?10p?117.6
根据投资回报率的计算办法,如果选择投资乙项目,只需E(?1)?E(?2),即
120??10p2?10p?117.6,得0.4?p?0.6.
因为E(?2)??10p2?10p?117.6,所以当P?的最大值为12.01%.
222??a?b?36??a?20??220.(Ⅰ)?2, 2???a?b?4?b?161时,E(?2)取到最大值为120.1,所以预测投资回报率2x2y2x2y2??1(y?0)和??1(y?0) 则曲线?的方程为
20162016 (Ⅱ)曲线C2的渐近线为y??bbx ,如图,设直线l:y?(x?m) aab?y?(x?m)??a则?2?2x2?2mx?(m2?a2)?0 2?x?y?1??a2b2
??(2m)2?4?2?(m2?a2)?4(2a2?m2)?0??2a?m?2a
又由数形结合知m?a,∴a?m?2a
?x1?x2?m?设点A(x1,y1),B(x2,y2),M(x0,y0),则?m2?a2,
?x1x2??2x1?x2mbbm?,y0?(x0?m)??? 22aa2bb∴y0??x0,即点M在直线y??x上.
aa∴x0?x2y2??1(y?0),点F4(6,0) (Ⅲ)由(Ⅰ)知,曲线C1:2016设直线l1的方程为x?ny?6(n?0)
?x2y2?1???(4n2?5)y2?48ny?64?0?2016?x?ny?6?
??(48n)2?4?64?(4n2?5)?0?n2?1
?48n?y?y?4??34n2?5设C(x3,y3),D(x4,y4),由韦达定理:?
?yy?64?344n2?5?n2?1∴|y3?y4|?(y3?y4)?4y3y4?165
4n2?52S?CDF1?|S?CF1F4?S?DF1F411n2?1n2?1 |?|F1F4|?|y3?y4|??8?165?2?6452224n?54n?522令t?n2?1?0,∴n?t?1, ∴S?CDF1?645?t4t?92?645?194t?t
∵t?0,∴4t?9313?12,当且仅当t?,即n?时等号成立 t22n?131165时,∴S?CDF1max?645? ?2123