?X??Y????????Xi?X??Yi?Y?2??Xi?X?S?XYSXX
所以,
???Y???i?Yi?Y??Xi??ii??SS?Yi??Y?XYX??XiXYSXX?SXX?S?Yi?Y?XY?Xi?X?SXX
(2)偏相关系数是指在剔除其他解释变量的影响后,一个解释变量对被解释变量的影响。不妨假设X,X对X进行一元线性回归得到的回归方程分别为: ????X?eX??,X??????X?e
则,e,e就分别表示X,X在剔除X影响后的值。
所以X,X关于X的偏相关系数就是指e,e的简单相关系数。 所以,
??e?e??e?e? r?231212113121212231231121i12i223.1??e1i?e1???e2i?e2?1222因为e?0,er21?1i1i?0??X??,?22i221i?X1??X2i?X2?1i??X?X1???X?X??X?X???X?X???X?X?1212i2,r31???X?X???X?X??X?X? ??X?X???X?X?1i11i13i3221i13i32??X,???21i?X1??X3i?X3?2
令X则??1i?X1?x1i,X2i?X2?x2i,X3i?X3?x3i
2?r21?x?x222i21i,??122?r31?x?x1223i
11i注意到X??????X,X??????X,所以e?x所以r???e?e??e?e???ee
1321i2i?2x1i,e2i?x3i???2x1i??1i12i21i2i23.1??e1i?e1???e2i?e2?22?e?e21i22i其中,
?ee??x1i2i?2x1i??x3i???2x1i????x2i???2?x1ix3i???2??2?x1i2x???2?x2ix1i??2x?3i2x?2i2x?2i2x?3i2i3i??x2ix3i?r31?r23?r23?r232?x23i21i?x2i1ix?r2123i?x2i21i?x21i1i3ix?r21?x22i1i231r1i?x23i21i?x21i21i?x?x2i?r31?r31?r31?x?x?x?x222i2i223i3i?xr?x?x?r?xr?x?x?rr?xr?x?x??r?rr?222122211i2221212i2i3i3i213123312123i?xr?x?x?r?x?x?rr?x?x?x?x231222i21313i3i2i222i2131r?x?x23i22i2同理可得:
?e?e21i2??1?r212??x2i2??1?r3123i2i ??x
2所以
r23.1??r23?r31r21??x2i2?x3i2?1?r??x?1?r??x22122i2312?r23?r31r213i?1?r??1?r?221231
2.7 2.7考虑下面两个模型: Ⅰ:Y????X????X????X?? Ⅱ:Y?X??????X?????X?????X??
i122illikkiiili122illikkii
(1) 证明???????1,??????,j?1,2,?,l?1,l?1,?k
(2) 证明模型Ⅰ和Ⅱ的最小二乘残差相等 (3) 研究两个模型的可决系数之间的大小
关系 解答: (1)设
lljj?1X2?Xk??Y1???,?1???????1???????????Y1X?X?,???2k2??????????Y?,X??????,?X????????????????????l???????????Y??1X?X,?n?2nkn??k??k???n??,?Xl?1??2,?Xl???????,?Xln?,,,,12
则模型Ⅰ的矩阵形式为:Y?X??? 模型Ⅱ的矩阵形式为:Y?X?X????
取e??0,?,0,1,0,?,0??,其中1为e的第l个分量 则X?Xe
令Z?Y?X?Y?Xe,则模型Ⅱ又可表示为Z?X???? 又OLS得知,????X?X?X?Y,?????X?X?X?Z 将Z?Y?X?Y?Xe代入可得:
lllllll?1?1ll????X?X?X?Z??X?X?X??Y?Xe??l?1?1??X?X?X?Y??X?X?X?Xel??e??l??????????0???1?11?????????????????????????????????????1???1?1??l????l????????????????????????0??k????k?????k????????1?1
即
(2)由上述计算可得:
????Z?X?e??Z?Z??e??Y?Xel??X?l??Y?Y??Y?X??e??
(3)由(2)可知ESS?ESS? RSSTSS?ESSESS R???1?TSSTSSTSS2所以要比较R和R?,只需比较TSS和TSS?
22?TSS????Zi?Z??????Yi?Xli???Y?Xl??2222????Yi?Y???Xli?Xl??2?Yi?Y??Xli?Xl????22???Yi?Y?????Xli?Xl??2?Yi?Y??Xli?Xl????2?TSS????Xli?Xl??2?Yi?Y??Xli?Xl?????TSS?2(n?1)cov(Y,Xl)?(n?1)var(Xl)
所以,当var(X)?2cov(Y,X)时,TSS?大于TSS,则R??R;反之,R??R
3.4美国1970-1995年个人可支配收入和个人储蓄的数据见课本102页表格。
由于美国1982年遭受了其和平时期最大的衰退,城市失业率达到了自1948年以来的最高水平9.7%。试建立分段回归模型,并通过模型进一步验证美国在1970-1995年间储蓄-收入关系发生了一次结构变动。 解答:
22ll22
建立模型为Y????X??D?X?2347.3???
其中Y为t年的个人储蓄,X为t年的个人可
t12t1ttttt当t?1982 支配收入,D??1,0,当t?1982t则E?Yt?1982?????X
t12tE?Ytt?1982????1?2347.3?1????2??1?Xt
Eviews代码: series d1=0 smpl 1982 1995 d1=1
smpl @all
ls sav c pdi d1*(pdi-2347.3)
?显著,所以美国在1970-1995年间储蓄-收
1