或者:x?3?x?2??x?3???x?2??5,∴a?5) 43. 等差数列的定义与性质
定义:an?1?an?d(d为常数),an?a1??n?1?d 等差中项:x,A,y成等差数列?2A?x?y
前n项和Sn??a1?an?n?na21?n?n?1?2d
性质:?an?是等差数列
(1)若m?n?p?q,则am?an?ap?aq;
(2)数列?a2n?1?,?a2n?,?kan?b?仍为等差数列; Sn,S2n?Sn,S3n?S2n??仍为等差数列;
(3)若三个数成等差数列,可设为a?d,a,a?d;
(4)若an,bn是等差数列Sn,Tn为前n项和,则amS2m?1?;bmT2m?1
2(5)a为等差数列?S?an?bn(a,b为常数,是关于n的常数项为 ??nn
0的二次函数)
Sn的最值可求二次函数Sn?an2?bn的最值;或者求出?an?中的正、负分界
项,即:
?an?0当a1?0,d?0,解不等式组?可得Sn达到最大值时的n值。?an?1?0 ?an?0当a1?0,d?0,由?可得Sn达到最小值时的n值。a?0?n?1
如:等差数列?an?,Sn?18,an?an?1?an?2?3,S3?1,则n?
(由an?an?1?an?2?3?3an?1?3,∴an?1?1
又S3??a1?a3?·3?3a22?1,∴a2?13
?1???1?na1?an?n?a2?an?1?·n?3??∴Sn????18222
?n?27)
44. 等比数列的定义与性质
定义:
an?1?q(q为常数,q?0),an?a1qn?1an
2 等比中项:x、G、y成等比数列?G?xy,或G??xy
?na1(q?1)?前n项和:Sn??a11?qn(要注意!)(q?1)??1?q
?? 性质:?an?是等比数列
(1)若m?n?p?q,则am·an?ap·aq (2)Sn,S2n?Sn,S3n?S2n??仍为等比数列
45.由Sn求an时应注意什么?
(n?1时,a1?S1,n?2时,an?Sn?Sn?1) 46. 你熟悉求数列通项公式的常用方法吗?
例如:(1)求差(商)法
111如:?an?满足a1?2a2????nan?2n?5222
1n?1时,a1?2?1?5,∴a1?142 解:
111n?2时,a1?2a2????n?1an?1?2n?1?5222
?1?
?2?
?1???2?得:1an?2n2
n?1∴a?2n
?14(n?1)∴an??n?1(n?2) ?2
[练习]
数列?an?满足Sn?Sn?1?5an?1,a1?4,求an3
(注意到an?1?Sn?1?Sn代入得:Sn?1?4Sn
n 又S1?4,∴?Sn?是等比数列,Sn?4
n?1n?2时,a?S?S????3·4nnn?1
(2)叠乘法
例如:数列?an?中,a1?3,an?1n?,求anann?1
a2aaa12n?11·3??n?·??,∴n?a2an?123na1n 解:a1
(3)等差型递推公式
又a1?3,∴an?3n
由an?an?1?f(n),a1?a0,求an,用迭加法
n?2时,a2?a1?f(2)??a3?a2?f(3)??两边相加,得:?????an?an?1?f(n)??
an?a1?f(2)?f(3)????f(n) ∴an?a0?f(2)?f(3)????f(n) [练习]
数列?an?,a1?1,an?3
(4)等比型递推公式
n?1?an?1?n?2?,求an
(an?1n3?1)2
??an?can?1?dc、d为常数,c?0,c?1,d?0??
可转化为等比数列,设an?x?c?an?1?x? ?an?can?1??c?1?x
令(c?1)x?d,∴x?dc?1
d?d?∴?an?是首项为a?,c为公比的等比数列?1c?1?c?1?
∴an?dd??n?1??a1??·cc?1?c?1?
d?n?1d?∴an??a1??c??c?1?c?1
[练习]
数列?an?满足a1?9,3an?1?an?4,求an
?4?(an?8????3?
(5)倒数法
n?1?1)
例如:a1?1,an?1?1an?12an,求anan?2
由已知得:
?an?211??2an2an
∴
1an?1?11?an2
?1?11???为等差数列,?1,公差为a12 ?an??
111?1??n?1?·??n?1?an22
2n?1
47. 你熟悉求数列前n项和的常用方法吗? 例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
∴an?
如:?an?是公差为d的等差数列,求?1k?1akak?1
n由 解:
n111?11???????d?0?aa?ddaaak·ak?1??kk?1?k?k
n11?11?∴??????ak?1? k?1akak?1k?1d?ak
?11??11??11?1???????????????????d??a1a2??a2a3?aa?nn?1??? [练习]
1?11????d?a1an?1?
求和:1?111?????1?21?2?31?2?3????n
1)n?1
(2)错位相减法:
(an??????,Sn?2? 若?an?为等差数列,?bn?为等比数列,求数列?anbn?(差比数列)前n项
和,可由Sn?qSn求Sn,其中q为?bn?的公比。
23n?1如:S?1?2x?3x?4x????nxn
?1?