王群(2)

2019-02-21 00:35

山东农业大学学士学位论文

新的序列及其功能,解读序列在生物体中充当的角色,进入理解生命本质。当前,对DNA序列数据研究的方法主要是从DNA序列数据出发,分析序列中所包含的结构与功能的生物信息,所涉及的研究主题包括基因组注释、编码区和非编码区识别、基因序列功能预测等等[1]。近年来,随着生物信息学和分子生物学的发展,尤其是基因组学和生物信息学技术被广泛应用于植物病原菌的研究。人们对于病原物的研究也逐步深入,主要是从基因序列水平上和生物信息学角度研究黑粉菌与炭疽菌的五个与系统发育相关的基因的差异。

1.1 生物信息学概述

1.1.1生物信息的收集、存储、管理与提供

包括建立国际基本生物信息库和生物信息传输的国际联网系统;建立生物信息数据质量的评估与检测系统;生物信息的在线服务;生物信息可视化和专家系统。 1.1.2基因组序列信息的提取和分析

包括基因的发现与鉴定,如利用国际EST 数据库 (dbEST) 和各自实验室测定的相应数据,经过大规模并行计算发现新基因和新SNPs以及各种功能位点;基因组中非编码区的信息结构分析,提出理论模型,阐明该区域的重要生物学功能;进行模式生物完整基因组的信息结构分析和比较研究;利用生物信息研究遗传MM起源、基因组结构的演化、基因组空间结构与DNA折叠的关系以及基因组信息与生物进化关系等生物学的重大问题[1]。 1.1.3功能基因组相关信息分析

包括与大规模基因表达谱分析相关的算法、软件研究,基因表达调控网络的研究;与基因组信息相关的核酸、蛋白质空间结构的预测和模拟,以及蛋白质功能预测的研究。

1.1.4生物大分子结构模拟和药物设计

包括RNA(核糖核酸)的结构模拟和反义RNA的分子设计;蛋白质空间结构模拟和分子设计;具有不同功能域的复合蛋白质以及连接肽的设计;生物活性分子的电子结构计算和设计;纳米生物材料的模拟与设计;基于酶和功能蛋白质结构、细胞表面受体结构的药物设计;基于DNA结构的药物设计等。 1.1.5生物信息分析的技术与方法研究

包括发展有效的能支持大尺度作图与测序需要的软件、数据库以及若干数据库工具,诸如电子网络等远程通讯工具;改进现有的理论分析方法,如统计方法、模式识别方法、隐马尔科夫过程方法、分维方法、神经网络方法、复杂性分析方法、

4

山东农业大学学士学位论文

MM学方法、多序列比较方法等;创建一切适用于基因组信息分析的新方法、新技术。包括引入复杂系统分析技术、信息系统分析技术等;建立严格的多序列比较方法;发展与应用MM学方法以及其他算法和分析技术,用于解释基因组的信息,探索DNA序列及其空间结构信息的新表征;发展研究基因组完整信息结构和信息网络的研究方法等;发展生物大分子空间结构模拟、电子结构模拟和药物设计的新方法与新技术。

1.1.6应用与发展研究

发展基于序列信息选择表达载体、引物的技术,建立与大分子设计和药物设计相关的数据库[1]。

1.2生物信息数据库与查询

近年来大量生物学实验的数据积累,形成了当前数以百计的生物信息数据库。它们各自按一定的目标收集和整理生物学实验数据,并提供相关的数据查询、数据处理的服务。随着因特网的普及,这些数据库大多可以通过网络来访问,或者通过网络下载。

一般而言,这些生物信息数据库可以分为一级数据库和二级数据库。一级数据库的数据都直接来源于实验获得的原始数据,只经过简单的归类整理和注释;二级数据库是在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步整理。国际上著名的一级核酸数据库有Genbank数据库、EMBL核酸库和DDBJ库等;蛋白质序列数据库有SWISS-PROT、PIR等;蛋白质结构库有PDB等。国际上二级生物学数据库非常多,它们因针对不同的研究内容和需要而各具特色,如人类基因组图谱库GDB、转录因子和结合位点库TRANSFAC、蛋白质结构家族分类库SCOP等等。 1.2.1基因和基因组数据库 1.2.1.1 Genbank

Genbank库包含了所有已知的核酸序列和蛋白质序列,以及与它们相关的文献著作和生物学注释。它是由美国国立生物技术信息中心(NCBI)建立和维护的。它的数据直接来源于测序工作者提交的序列;由测序中心提交的大量EST序列和其它测序数据;以及与其它数据机构协作交换数据而来。Genbank每天都会与欧洲分子生物学实验室(EMBL)的数据库,和日本的DNA数据库(DDBJ)交换数据,使这三个数据库的数据同步。到1999年8月,Genbank中收集的序列数量达到460万条,34亿个碱基,而且数据增长的速度还在不断加快。Genbank的数据可以从NCBI的FTP

5

[6]

山东农业大学学士学位论文

服务器上免费下载完整的库,或下载积累的新数据。NCBI还提供广泛的数据查询、序列相似性搜索以及其它分析服务,用户可以从NCBI的主页上找到这些服务。 Genbank库里的数据按来源于约55,000个物种,其中56%是人类的基因组序列(所有序列中的34%是人类的EST序列)。每条Genbank数据记录包含了对序列的简要描述,它的科学命名,物种分类名称,参考文献,序列特征表,以及序列本身。序列特征表里包含对序列生物学特征注释如:编码区、转录单元、重复区域、突变位点或修饰位点等。所有数据记录被划分在若干个文件里,如细菌类、病毒类、灵长类、啮齿类,以及EST数据、基因组测序数据、大规模基因组序列数据等16类,其中EST数据等又被各自分成若干个文件。 1.2.1.1.1 Genbank数据检索

NCBI的数据库检索查询系统是Entrez。Entrez是基于Web界面的综合生物信息数据库检索系统。利用Entrez系统,用户不仅可以方便地检索Genbank的核酸数据,还可以检索来自Genbank和其它数据库的蛋白质序列数据、基因组图谱数据、来自分子模型数据库(MMDB)的蛋白质三维结构数据、种群序列数据集、以及由PubMed获得Medline的文献数据。

Entrez提供了方便实用的检索服务,所有操作都可以在网络浏览器上完成。用户可以利用Entrez界面上提供的限制条件(Limits)、索引(Index)、检索历史(History)和剪贴板(Clipboard)等功能来实现复杂的检索查询工作。对于检索获得的记录,用户可以选择需要显示的数据,保存查询结果,甚至以图形方式观看检索获得的序列。更详细的Entrez使用说明可以在该主页上获得。 1.2.1.1.2向Genbank提交序列数据

测序工作者可以把自己工作中获得的新序列提交给NCBI,添加到Genbank数据库。这个任务可以由基于Web界面的BankIt或独立程序Sequin来完成。 BankIt是一系列表单,包括联络信息、发布要求、引用参考信息、序列来源信息、以及序列本身的信息等。用户提交序列后,会从电子邮件收到自动生成的数据条目,Genbank的新序列编号,以及完成注释后的完整的数据记录。用户还可以在BankIt页面下修改已经发布序列的信息。BankIt适合于独立测序工作者提交少量序列,而不适合大量序列的提交,也不适合提交很长的序列,EST序列和GSS序列也不应用BankIt提交。BankIt使用说明和对序列的要求可详见其主页面。 大量的序列提交可以由Sequin程序完成。Sequin程序能方便的编辑和处理复杂注释,并包含一系列内建的检查函数来提高序列的质量保证。它还被设计用于提交来自系统进化、种群和突变研究的序列,可以加入比对的数据。Sequin除了用于

6 [7]

山东农业大学学士学位论文

编辑和修改序列数据记录,还可以用于序列的分析,任何以FASTA或ASN.1格式序列为输入数据的序列分析程序都可以整合到Sequin程序下。在不同操作系统下运行的Sequin程序都可以在ftp://ncbi.nlm.nih.gov/sequin/下找到,Sequin的使用说明可详见其网页。

NCBI的网址是:http://www.ncbi.nlm.nih.gov。

Entrez的网址是:http://www.ncbi.nlm.nih.gov/entrez/。 BankIt的网址是:http://www.ncbi.nlm.nih.gov/BankIt。 Sequin的相关网址是:http://www.ncbi.nlm.nih.gov/Sequin/。 1.2.2 EMBL核酸序列数据库

EMBL核酸序列数据库由欧洲生物信息学研究所(EBI)维护的核酸序列数据构成,由于与Genbank和DDBJ的数据合作交换,它也是一个全面的核酸序列数据库。该数据库由Oracal数据库系统管理维护,查询检索可以通过通过因特网上的序列提取系统(SRS)服务完成。向EMBL核酸序列数据库提交序列可以通过基于Web的WEBIN工具,也可以用Sequin软件来完成。 数据库网址是:http://www.ebi.ac.uk/embl/。 SRS的网址是:http://srs.ebi.ac.uk/。

WEBIN的网址是:http://www.ebi.ac.uk/embl/Submission/webin.html。

[8]

1.3序列比对和数据库搜索

比较是科学研究中最常见的方法,通过将研究对象相互比较来寻找对象可能具备的特性。在生物信息学研究中,比对是最常用和最经典的研究手段。

最常见的比对是蛋白质序列之间或核酸序列之间的两两比对,通过比较两个序列之间的相似区域和保守性位点,寻找二者可能的分子进化关系。进一步的比对是将多个蛋白质或核酸同时进行比较,寻找这些有进化关系的序列之间共同的保守区域、位点和profile,从而探索导致它们产生共同功能的序列模式。此外,还可以把蛋白质序列与核酸序列相比来探索核酸序列可能的表达框架;把蛋白质序列与具有三维结构信息的蛋白质相比,从而获得蛋白质折叠类型的信息。

[9]

7

山东农业大学学士学位论文

比对还是数据库搜索算法的基础,将查询序列与整个数据库的所有序列进行比对,从数据库中获得与其最相似序列的已有的数据,能最快速的获得有关查询序列的大量有价值的参考信息,对于进一步分析其结构和功能都会有很大的帮助。近年来随着生物信息学数据大量积累和生物学知识的整理,通过比对方法可以有效地分析和预测一些新发现基因的功能。 1.3.1序列两两比对

序列比对的理论基础是进化学说,如果两个序列之间具有足够的相似性,就推测二者可能有共同的进化祖先,经过序列内残基的替换、残基或序列片段的缺失、以及序列重组等遗传变异过程分别演化而来。序列相似和序列同源是不同的概念,序列之间的相似程度是可以量化的参数,而序列是否同源需要有进化事实的验证。在残基-残基比对中,可以明显看到序列中某些氨基酸残基比其它位置上的残基更保守,这些信息揭示了这些保守位点上的残基对蛋白质的结构和功能是至关重要的,例如它们可能是酶的活性位点残基,形成二硫键的半胱氨酸残基,与配体结合部位的残基,与金属离子结合的残基,形成特定结构motif的残基等等。但并不是所有保守的残基都一定是结构功能重要的,可能它们只是由于历史的原因被保留下来,而不是由于进化压力而保留下来。因此,如果两个序列有显著的保守性,要确定二者具有共同的进化历史,进而认为二者有近似的结构和功能还需要更多实验和信息的支持。通过大量实验和序列比对的分析,一般认为蛋白质的结构和功能比序列具有更大的保守性,因此粗略的说,如果序列之间的相似性超过30%,它们就很可能是同源的

[10]

Genbank、SWISS-PROT等序列数据库提供的序列搜索服务都是以序列两两比对为基础的。不同之处在于为了提高搜索的速度和效率,通常的序列搜索算法都进行了一定程度的优化,如最常见的FASTA工具和BLAST工具。FASTA是第一个被广泛应用的序列比对和搜索工具包,包含若干个独立的程序。FASTA为了提供序列搜索的速度,会先建立序列片段的“字典”,查询序列先会在字典里搜索可能的匹配序列,字典中的序列长度由ktup参数控制,缺省的ktup=2。FASTA的结果报告中会给出每个搜索到的序列与查询序列的最佳比对结果,以及这个比对的统计学显著性评估E值。FASTA工具包可以在大多提供下载服务的生物信息学站点上找到

[11]

BLAST是现在应用最广泛的序列相似性搜索工具,相比FASTA有更多改进,速度更快,并建立在严格的统计学基础之上。NCBI提供了基于Web的BLAST服务,用户可以把序列填入网页上的表单里,选择相应的参数后提交到数据服务器上进行搜索,从电子邮件中获得序列搜索的结果。BLAST包含五个程序和若干个相应的数据库,分别针对不同的查询序列和要搜索的数据库类型。其中翻译的核酸库指搜索比对时会把核酸数据按MM子按所有可能的阅读框架转换成蛋白质序列。

8


王群(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:(新)如意集团职工餐厅钢结构厂房施工组织设计_

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: