2013年黑龙江省龙东地区中考数学试卷及答案(Word解析版)(5)

2019-03-03 14:34

考点: 相似形综合题. 2分析: (1)证△AOC∽△COB,推出OC=OA?OB,即可得出答案. (2)求出OA=9,OC=12,OB=16,AC=15,BC=20,证△ACD≌△AED,推出AE=AC=15,证△BDE∽△BAC,求出DE=,D(6,),设直线AD的解析式是y=kx+b,过A(﹣9,0)和D点,代入得出,求出k=,b=即可. (3)存在点M,使得C、B、N、M为顶点的四边形是正方形, 理由是:①以BC为对角线时,作BC的垂直平分线交BC于Q,交x轴于F,在直线FQ上取一点M,使∠CMB=90°,则符合此条件的点有两个,证△BQF∽△BOC,求出BF=,F(,0),Q(8,6),设直线QF的解析式是y=ax+c,代入得出,得出直线FQ的解析式是:y=x﹣2,求出a=,c=﹣﹣﹣,设M的坐标是(x,x﹣12)=(x﹣16)+(x22),根据CM=BM和勾股定理得:(x﹣0)+(x﹣2﹣0),即可求出M的坐标;②以BC为一边时,过B作BM3⊥BC,且BM3=BC=20,过M3Q⊥OB于Q,还有一点M4,CM4=BC=20,CM4⊥BC,证△BCO≌△M3BQ,求出BQ=CO=12,QM3=OB=16,求出M3的坐标,同法可求出M4的坐标. 解答: 解:(1)在Rt△AOC中,∠CAB+∠ACO=90°,在Rt△ABC中,∠CAB+∠CBA=90°, ∴∠ACO=∠CBA, ∵∠AOC=∠COB=90°, ∴△AOC∽△COB, 2∴OC=OA?OB, ∴OC=12, ∴C(0,12); (2)在Rt△AOC和Rt△BOC中, ∵OA=9,OC=12,OB=16, ∴AC=15,BC=20, ∵AD平分∠CAB, ∵DE⊥AB, ∴∠ACD=∠AED=90°, 第 21 页 共 24 页

∵AD=AD, ∴△ACD≌△AED, ∴AE=AC=15, ∴OE=AE﹣OA=15﹣9=6,BE=10, ∵∠DBE=∠ABC,∠DEB=∠ACB=90°, ∴△BDE∽△BAC, ∴=∴DE=, , ), ∴D(6,设直线AD的解析式是y=kx+b, ∵过A(﹣9,0)和D点,代入得:, k=,b=, 直线AD的解析式是:y=x+; (3)存在点M,使得C、B、N、M为顶点的四边形是正方形, 理由是:① 以BC为对角线时,作BC的垂直平分线交BC于Q,交x轴于F,在直线FQ上取一点M,使∠CMB=90°,则符合此条件的点有两个, BQ=CQ=BC=10, ∵∠BQF=∠BOC=90°,∠QBF=∠CBO, ∴△BQF∽△BOC, ∴=, ∵BQ=10,OB=16,BC=20, 第 22 页 共 24 页

∴BF=, =, ∴OF=16﹣即F(,0), ∵OC=12,OB=16,Q为BC中点, ∴Q(8,6), 设直线QF的解析式是y=ax+c, 代入得:, a=,c=﹣, , 直线FQ的解析式是:y=x﹣设M的坐标是(x,x﹣), 根据CM=BM和勾股定理得:(x﹣0)+(x﹣0), x1=14,x2=2, 即M的坐标是(14,14),(2,﹣2); 22﹣12)=(x﹣16)+(x﹣22﹣② 以BC为一边时,过B作BM3⊥BC,且BM3=BC=20,过M3Q⊥OB于Q,还有一点M4,CM4=BC=20,CM4⊥BC, 则∠COB=∠M3B=∠CBM3=90°, ∴∠BCO+∠CBO=90°,∠CBO+∠M3BQ=90°, ∴∠BCO=∠M3BQ, ∵在△BCO和△M3BQ中 第 23 页 共 24 页

∴△BCO≌△M3BQ(AAS), ∴BQ=CO=12,QM3=OB=16, OQ=16+12=28, 即M3的坐标是(28,16), 同法可求出CT=OB=16,M4T=OC=12,OT=16﹣12=4, ∴M4的坐标是(﹣12,﹣4), 即存在,点M的坐标是(28,16)或(14,14)或(﹣12,﹣4)或(2,﹣2). 点评: 本题考查了一次函数的有关内容,相似三角形的性质和判定,全等三角形的性质和判定,正方形的性质等知识点的综合应用,题目综合性比较强,难度偏大.

第 24 页 共 24 页


2013年黑龙江省龙东地区中考数学试卷及答案(Word解析版)(5).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:读书的好处

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: