全等三角形练习题 德胜教育
2.(08河北中考第24题)如图14-1,在△ABC中,BC边在直线l上,AC⊥BC,且AC = BC.△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)在图14-1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图14-2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图14-3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.
A E A E A (E)
Q
l B l C l B F P F P B C P C (F)
图14-1 图14-2 Q 图14-3
16 打造品牌教育 共铸美好明天
全等三角形练习题 德胜教育
3.(2006年辽宁沈阳25题).如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE;②AF⊥DE.(不需要证明)
(1)如图2,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF.则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)
(2)如图3,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
4.如图1,A、E、F、C在同一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,若AB=CD,试说明BD平分EF;若将△DEC的边EC沿AC方向移动变为图2时,其余条件不变,BD是否还平分EF,请说明理由。
17 打造品牌教育 共铸美好明天
全等三角形练习题 德胜教育
5.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.
求证:(1)AE=CD; (2)若AC=12 cm,求BD的长.
6.如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB=90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.
7.已知BE,CF是△ABC的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系
QFADPBEC18 打造品牌教育 共铸美好明天
全等三角形练习题 德胜教育
8. 在Rt△ABC中,AC=BC,∠ACB=90°,D是AC的中点,DG⊥AC交AB于点G.
(1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与 CF,过点F作FH⊥FC,交直线AB于点H. ①求证:DG=DC
②判断FH与FC的数量关系并加以证明.
(2)若E为线段DC的延长线上任意一点,点F在射线DG上,(1)中的其他条件不变,借助图2画出图形。在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变.(本小题直接写出结论,不必证明)
B
AGFDBHGECADCE
30、如图,AD//BC,AD=BC,AE⊥AD,AF⊥AB,且AE=AD,AF=AB,求证:AC=EF DCE
19 打造品牌教育 共铸美好明天
ABF 全等三角形练习题 德胜教育
1.直线CD经过?BCA的顶点C,CA=CB.E、F分别是直线CD上两点,且?BEC??CFA???. (1)若直线CD经过?BCA的内部,且E、F在射线CD上,请解决下面两个问题:
①如图1,若?BCA?90?,???90?,则EF BE?AF(填“?”,“?”或“?”号);
②如图2,若0??BCA?180,若使①中的结论仍然成立,则 ??与?BCA 应满足的关系是 ; (2)如图3,若直线CD经过?BCA的外部,????BCA,请探究EF、与BE、AF三条线段的数量关系,并给予证明.
B
B B
2.已知:如图,四边形ABCD中,AC平分?BAD,CE?AB 于E,且?B+?D=180?,求证:AE=AD+BE
E C 图1
F
D
C A
图2
A E F D
E C F A
??图3
D
A 1 D 2 E B
C
20 打造品牌教育 共铸美好明天