2010年中考数学试题分类大全46 - 综合型问题 - 图文(2)

2019-03-27 20:22

4.(2010江苏南通)(本小题满分12分)

如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y. (1)求y关于x的函数关系式;

(2)若m=8,求x为何值时,y的值最大,最大值是多少? (3)若y?A F 12,要使△DEF为等腰三角形,m的值应为多少? mD

B E

(第27题)

C

【答案】⑴在矩形ABCD中,∠B=∠C=Rt∠, ∴在Rt△BFE中, ∠1+∠BFE=90°,

又∵EF⊥DE ∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED

BFBEy8?x8x?x2?∴即?∴y? CECDxmm

18x?x22⑵当m=8时, y?,化成顶点式: y???x?4??2,

88∴当x=4时,y的值最大,最大值是2.

8x?x122⑶由y?,及y?得x的方程: x?8x?12?0,得, x1?2;x2?6,

mm∵△DEF中∠FED是直角,

∴要使△DEF是等腰三角形,则只能是EF=ED, 此时, Rt△BFE≌Rt△CED, ∴当EC=2时,m=CD=BE=6; 当EC=6时,m=CD=BE=2.

即m的值应为6或2时, △DEF是等腰三角形. 5.(2010江苏南通)(本小题满分14分)

已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与 x轴平行,O为坐标原点.

(1)求直线AB和这条抛物线的解析式;

(2)以A为圆心,AO为半径的圆记为⊙A,判断直线l与⊙A的位置关系,并说明理

由;

(3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax2+bx+c上的动

点,当

△PDO的周长最小时,求四边形CODP的面积.

2y 4 3 2 1 -4 -3 -2 -1 O -1 -2 -3 -4 1 2 3 4 x (第28题)

【答案】(1)因为当x=3和x=-3时,这条抛物线上对应点的纵坐标相等,故b=0. 设直线AB的解析式为y=kx+b,把A(-4,3)、B(2,0)代入到y=ax2+bx+c,得

1?a?,?16a?c?3,? 解得4 ???4a?c?0.??c??1.∴这条抛物线的解析式为y=

12

x-1. 4设直线AB的解析式为y=kx+b,把A(-4,3)、B(2,0)代入到y=kx+b,得

1???4k?b?3,?k??, 解得?2 ??2k?b?0.??b?1.∴这条直线的解析式为y=-

1x+1. 2(2)依题意,OA=32?42?5.即⊙A的半径为5. 而圆心到直线l的距离为3+2=5. 即圆心到直线l的距离=⊙A的半径, ∴直线l与⊙A相切.

(3)由题意,把x=-1代入y=-

133x+1,得y=,即D(-1,).

222由(2)中点A到原点距离跟到直线y=-2的距离相等,且当点A成为抛物线上一个动点时,仍然具有这样的性质,于是过点D作DH⊥直线l于H,交抛物线于点P,此时易得DH

317)此时四边形PDOC为梯形,面积为. 486.(2010江苏盐城)(本题满分12分)如图1所示,在直角梯形ABCD中,AD∥BC,AB

⊥BC,∠DCB=75o,以CD为一边的等边△DCE的另一顶点E在腰AB上. (1)求∠AED的度数; 是D点到l最短距离,点P坐标(-1,-

(2)求证:AB=BC;

(3)如图2所示,若F为线段CD上一点,∠FBC=30o. 求

DF

的值. FC

【答案】

7.(2010山东烟台)(本题满分14分)

如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C。 (1)求抛物线的解析式; (2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,

求点P的坐标;

(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由。


2010年中考数学试题分类大全46 - 综合型问题 - 图文(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:甲级单位编制炭块项目可行性报告(立项可研+贷款+用地+2013案例

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: