f(x1)x1f(x2)x2?f(x1?x2)x1?x2f(x1?x2)x1?x2?f(x1)?x1x1?x2x2?f(x1?x2)
??f(x2)?x1?x2?f(x1?x2)
两式相加后可以得到f(x1)? (3)
f(x1)x1?f(x1?x2???xn)x1?x2???xnf(x2)?f(x1?x2)
x1x1?x2???xn?f(x1?x2???xn)?f(x1)? ……
f(x2)x2f(xn)xn?f(x1?x2???xn)x1?x2???xn?f(x2)?x2x1?x2???xnxn?f(x1?x2???xn)?f(x1?x2???xn)x1?x2???xn?f(xn)?x1?x2???xn?f(x1?x2???xn)相加后可以得到:
f(x1)?f(x2)???f(xn)?f(x1?x2???xn)
所
令
xn?1以,有
2x1lnx1?x2lnx2?x3lnx3???xnlnxn?(x1?x2???xn)ln(x1?x2???xn)?11112222???22ln2?32ln3?42ln4???(n?1)2ln(n?1)???111?2??ln??2?2???3(n?1)??2????
(1?n)?????
?1111?2?2?2?2???34(n?1)?2?111???22?32???(n?1)2?
??1?11??ln?????????(n?1)n??2?13?2?
1??11?n??????????2(n?1)(n?2)?n?1??2n?2?122
n2(n?1)(n?2) 所以
ln2?2132ln3?2142ln4???21(n?1)ln42ln(n?1)?2(n?N).*
(方法二)ln(n?1)(n?1)22?ln(n?1)2(n?1)(n?2)?1??1?ln4???(n?1)(n?2)?n?1n?2?
所以
122ln2?2132ln3?2141222ln4???21?nln4?12ln(n?1)?ln4????(n?1)?2n?2?2(n?2)21 又ln4?1?1n?1,所以
ln2?2132ln3?2142ln4???21(n?1)2ln(n?1)?2n2(n?1)(n?2)(n?N).* 例16.(2008年福州市质检)已知函数f(x)?xlnx.若a?0,b?0,证明:f(a)?(a?b)ln2? 解析:设函数g(x)? ?f(x)?xlnx,?0?x?k.?g?(x)?lnx?1?ln(k?x)?1?ln令g?(x)?0,则有xk?x?1?xk?x,k2?x?k.f(x)?f(k?x),(k?0)f(a?b)?f(b).
?g(x)?xlnx?(k?x)ln(k?x),2x?kk?x?0? ∴函数
g(x)在[k2,k)上单调递增,在(0,k]上单调递减.
2kg()2
∴g(x)的最小值为而g(k)?2,即总有g(x)?k g().2kkkf()?f(k?)?kln?k(lnk?ln2)?f(k)?kln2,222
?g(x)?f(k)?kln2,
即f(x)?f(k?x)?f(k)?kln2.
?a?b.令x?a,k?x?b,则k ?
?f(a)?f(b)?f(a?b)?(a?b)ln2.
f(a)?(a?b)ln2?f(a?b)?f(b).
例17. ⑴设函数
f(x)?xlog2x?(1?x)log2(1?x) (0?x?1),求f(x)的最小值;
⑵设正数p
p1logp1?p2log1,p2,p3,?,p2n满足p1?p2?p3???p2n?1,证明
22p2?p3log2p3???p2nlog2p2n??n.
解析:对函数f(x)求导数:
?logx?log2(1?x)?1ln2?1ln2f?(x)?(xlog2x)??[(1?x)log2(1?x)]?
2.?log2x?log2(1?x).
于是
1f?()?0.2
在区间(0,1)是减函数,
2当x?1时,f?(x)?log22x?log2(1?x)?0,f(x)当x?所以
12时,f?(x)?log2x?log2(1?x)?0,f(x)在区间(12,1)是增函数.
f(x)在x?12时取得最小值,f(1)??1,
2(Ⅱ)证法一:用数学归纳法证明. (i)当n=1时,由(Ⅰ)知命题成立. (ii)假定当n?k时命题成立,即若正数p则p1logp1?p2logp2???p2klogp2k??k.
1,p2,?,p2k满足p1?p2???p2k?1,
222当n?k?1时,若正数p1,p2,?,p2令x?p1?p2???p2k,q1?p1x,q2?p2xk?1满足p1?p2???p2k?1?1,
p2kx,?,q2k?.
则q1,q2,?,q2为正数,且q1k?q2???q2k?1.
由归纳假定知q1logp1log22p1?p2log2p2???q2klogp2k?x(q1log2q2k??k. q1?q2logq2???q2klogq2kp1?p2log2p2???p2klog2222
?log2x)?x(?k)?xlog2x,
①
可得p2k同理,由p2k?1?p2k?2???p2k?1?1?x?1log2p2k?1???p2k?1log2p2k?1
?(1?x)(?k)?(1?x)log2(1?x).
②
2综合①、②两式p1log2p1?p2logp2???p2k?1log2p2k?1
x?(1?x)log2(1?x)??(k?1).
?[x?(1?x)](?k)?xlog2即当n?k?1时命题也成立. 根据(i)、(ii)可知对一切正整数n命题成立. 证法二:
令函数g(x)?xlog2x?(c?x)log2(c?x)(常数c?0,x?(0,c)),那么
g(x)?c[xclogx2c?(1?xc)log2(1?12xc)?log2c],
利用(Ⅰ)知,当xc?(即x?c2)时,函数g(x)取得最小值.
对任意xx1log21?0,x2?0,都有
x1?x22logx1?x22x1?x2log2x2?2?
①
2
?(x1?x2)[lo2g(x1?x2)?1].
下面用数学归纳法证明结论. (i)当n=1时,由(I)知命题成立. (ii)设当n=k时命题成立,即若正数p
p1log2p1?p2log2p2???p2klog2p2k??k.当n?k?1时,p1,p2,?,p2k?1满足p1?p2???p2k?1?1.令H?p1log2p1?p2log2p2???p2k?1?1log2p2k?1?1?p2k?1log2p2k?11,p2,?,p2k满足p1?p2???p2k?1,有
由①得到
H?(p1?p2)[log2(p1?p2)?1]???(p2k?1?1?p2k?1)[log2(p2k?1?1?p2k?1)?1],因为(p1?p2)???(p2k?1?1?p2k?1)?1,
由归纳法假设
(p1?p2)logp(?21p2??)?2k?1p(?1?2k?1p)l2ogp?1k?1(2?k?1p??2得)k到 ,H??k?(p1?p2???p2k?1?1?p2k?1)??(k?1).
即当n?k?1时命题也成立. 所以对一切正整数n命题成立.
例18. 设关于x的方程x为正实数,证明不等式:
解析:?2x?mx?122?mx?1?0有两个实根?,?,且???,定义函数f(x)?2x?m.若?,?x?12|f(????????2)?f(????????)|?|???|.
f(x)??f?(x)?2(x?1)?(2x?m)?2x(x?1)22??2(x?mx?1)(x?1)222当x?(?,?)时,x2?mx?1?(x,?)(x??)?0?f?(x)?0
?f(x)在(?,?)上为增函数
??,??R?且????
?????????????????????(???)??(???)????0
?????????????????(???)??????(???)????0
?a???????????
????????f(由可知f(a)?f()?f(?)
11同理可得f(a)?????????)?f(?)?f(?)?f(?)?f(????????)?f(????????)?f(?)?f(?)?|f(????????)?f(????????)|?|f(?)?f(?)|又由(Ⅰ)知f(?)??,f(?)??,????1
?|f(?)?f(?)|?|1a?1?|?|?????|?|???|
所以|f(????????)?f(????????)|?|???|
三、分式放缩
姐妹不等式:ba?b?ma?m(b?a?0,m?0)和
ba?b?ma?m(a?b?0,m?0)
记忆口诀”小者小,大者大”
解释:看b,若b小,则不等号是小于号,反之. 例19. 姐妹不等式:(1?1)(1?1)(1?1)?(1?35(1?12)(1?14)(1?16)?(1?12n)?12n?112n?1b?ma?m1?(b?a?0,m?0)12n?1)?2n?1和
也可以表示成为
可得
2?4?6??2n1?3?5???(2n?1)?2n?1和1?3?5???(2n?1)?2?4?6???2n?解析: 利用假分数的一个性质ba
?(2462n????3?5?7?2n?1?1352n?12462n352n?1???(2n?1)2462n1112462n2)????)?2n?1即(1?1)(1?)(1?)?(1?352n?11352n?12n?1.
例20.证明:(1?1)(1?)(1?)?(1?471113n?2)?33n?1.
解析: 运用两次次分式放缩:
2583n?13693n??????.?????1473n?22583n?1 (加1) (加2)
21?54?87???3n?13n?2?47103n?1.?????3693n 相乘,可以得到:
3n?1?47103n?11473n?2?258???????????(3n?1)????????.?3n?2?2583n?12583n?1?1472
所以有(1?1)(1?1)(1?1)?(1?4713n?2)?33n?1.
四、分类放缩
例21.求证:1?1?1???2312?1n?n2
?1?12?(14?14)?(123 解析:
(12n1?12?13???12?1n?123?123?123)???
?12n???12n)?12n?n2?(1?12n)?n2
例22.(2004年全国高中数学联赛加试改编) 在平面直角坐标系xoy中, y轴正半轴上的点列?A?与曲线y?n2x(x≥0)上的点列?B?满足OAnn?OBn?1n,直线AnBn在x轴上的截
距为an.点Bn的横坐标为bn,n?N?.
(1)证明an>a>4,n?N; (2)证明有n0?N?,使得对?n?n都有b2?n?10b1??b3b2???bnbn?1?bn?1bn 解析:(1) 依题设有:A 2n?1?0,?n??,Bnbn,??2bn,?bn?0??,由OB1n得: nbn?2bn?1n2,?bn?1n2?1?1,n?N*,又直线AB在x轴上的截距为an满足 nn?an??0???2bn?1??1????0???bn?0?n??n? an?bn1?n2bn ?2n2bn?1?nbn?0,bn?2?221nbn2 ?an?bn1?n2bn?bn1?n2bn1?2nbn1n?12???1nbn2?2nbn?bn?2?2bn?4?an?1n2?1?1?2?21n2?1 显然,对于1?n?0,有a*n?an?1?4,n?N* (2)证明:设 1ncn?2cn?1?bn?1bn,n?N,则 1?1?1n121?n?1??1?12?1?112?n?2?2?n?n?1????1???22??2????n1n22?1?11?1 2?1??n?1??2n?1n22?1?11n2?n?1?2??12n?1?n?1?2??2n?1??2?2?n?1?1?1?2n?1??2n?1??n?2??2?n?1??n?0,?cn?1n?2,n?N* *设SnSn??c1?c2???cn,n?N*,则当n?2k?2?1?k?N?时, 13122?14???12312?1k??11???2?34k11??11???1???3???k?1???k????22??2?12???2?1?2??2?2???2k?1?12k?k?12。 所以,取n0?b??1?2???b1????24009?2,对?n?n0都有: ?4017?1??Sn?Sn??20080?2???b?b?1?3?????1?n?1??b2?bn???