故有b2b1?b3b2???bnbn?1?bn?1bn f(x)?x?bx?c(b?1,c?R)n 例23.(2007年泉州市高三质检) 已知函数 2,若f(x)的定 n义域为[-1,0],值域也为[-1,0].若数列{bn}满足b?f(n)n3(n?N)*,记数列{b}的前n项?并证明你的结论。 和为Tn,问是否存在正常数A,使得对于任意正整数n都有T 解析:首先求出f(x)?∴Tn12k?122x?2x,∵b?f(n)?n?2n?1n33n?A 141,125nnn?b1?b2?b3???bn?1?112kk?112??1213???1n,∵1?314?2???16?17?18?4?18?12,… ?1?2k?1?2????2?12k,故当n?2k时,Tn?k2?1, 因此,对任何常数A,设m是不小于A的最小正整数, 则当n?22m?2时,必有T故不存在常数A使Tn?2m?22?1?m?A. n?A对所有n?2的正整数恒成立. 表示的平面区域为D,设D内整 nnx?0, 例24.(2008年中学教学参考)设不等式组???y?0,?y??nx?3n?数坐标点的个数为an.设当nSn?1an?1?1an?2???1a2n, . 1a2n7n?1136?2时,求证:1?1?1???1?7n?11a1a2a3a2n1a236 解析:容易得到a1213n?3n,所以,要证1a1??1a3????只要证 171812n?1S2n?1?12????12n?7n?1112327,因为S(n?1)?2n?1?12?(13?14)?(15?16??)???(?1?12n?1?2???12n ?1??T21?T22???T2n?1??7n?1112,所以原命题得证. 12五、迭代放缩 例25. 已知xn?1?xn?4xn?1,x1?1,求证:当n?2时, 12n?1n?|xi?1i?2|?2?21?n 解析:通过迭代的方法得到 例26. 设S 解析: ?|sin1!21xn?2?,然后相加就可以得到结论 1 k,若k≥n恒有:|Sn+k-Sn|< n n??sin2!22???sinn!,求证:对任意的正整数2n|Sn?k?Sn|?|sin(n?1)!2n?1?sin(n?2)!2n?2???sin(n?k)2n?k| 1???12n?ksin(n?1)!212nn?1|?|sin(n?2)!212kn?2|???|sinn(?k)212nn?k|?12n?1? 2n?2?(12?122???)?12n?(1?12k)? 又2n?(1?1)n?Cn?Cn???Cn?n01n 所以|Sn?k?Sn|?12n?1n 六、借助数列递推关系 例27.求证:1?21?32?4?1?3?52?4?6???1?3?5???(2n?1)2?4?6???2n?2n?2?1 解析: 设aan?1?n?1?3?5???(2n?1)2?4?6???2n则 ,从而 2n?12(n?1)an?2(n?1)an?1?2nan?anan?2(n?1)an?1?2nan,相加后就可以得到 12n?312n?2a1?a2???an?2(n?1)an?1?2a1?2(n?1)??1?(2n?2)??1 所以1?21?32?4?1?3?52?4?6???1?3?5???(2n?1)2?4?6???2n?2n?2?1 例28. 求证:1?21?32?4?1?3?52?4?6???1?3?5???(2n?1)2?4?6???2n?2n?1?1 解析: 设aan?1?2n?12(n?1)n?1?3?5???(2n?1)2?4?6???2n则 ,从而 an?[2(n?1)?1]an?1?(2n?1)an?an?1an?1?[2(n?1)?1]an?1?(2n?1)an,相加后就可以得到 a1?a2???an?(2n?1)an?1?3a1?(2n?1)?12n?1?32?2n?1?1 例29. 若a1 解析: ?1,an?1?an?n?1,求证:1a1?1a2???1an?2(n?1?1) an?2?an?1?n?2?an?an?1?1?1an?1?an?2?an 所以就有 1a1?1a2???1an?1a1?an?1?an?a2?a1?2an?1an?a2?2n?1?2 七、分类讨论 例30.已知数列{a}的前n项和S满足Snnn?2an?(?1),n?1.证明:对任意的整数 nm?4,有 1a4?1a5???1am?78 ?2?., 解析:容易得到an?23n?2?(?1)n?1 由于通项中含有(?1),很难直接放缩,考虑分项讨论: 当n?3且n为奇数时1131 132?2n?2n?1nan?an?1?22(n?2?1?2n?1?1)?22?2n?3?2n?1?2n?2?1 ?32?2?2n?322n?2n?1?32?(12n?2?12n?1)(减项放缩),于是 1a412 ①当m?4且m为偶数时 ?12?3(13??1a5???1am?1a4?(1a5?1a6)???(1am?1?1am) 22?124???12m?2)?311137??(1?m?4)???. 242882 ②当m?4且m为奇数时 1a4?1a5???1am?1a4?1a5???1am?1am?1(添项放缩)由①知 1a4?1a5???1am?1am?1?78.由①②得证。 八、线性规划型放缩 例31. 设函数f(x)? 解析:由 (f(x)?122x?1x?22.若对一切x?R,?3?af(x)?b?3,求a?b的最大值。 ?(x?2)(x?1)2(x?2)2222)(f(1)?1)?知(f(x)?1)(f(1)?1)?0 即 2?12?f(x)?1 由此再由f(x)的单调性可以知道f(x)的最小值为?1,最大值为1 21因此对一切x?R,?3?af(x)?b?3的充要条件是,? ??3??a?b?32???3?a?b?3? 即a,b满足约束条件?a?b??3?a?b?3??1??a?b??3?2?1??a?b?3?2, 由线性规划得,a?b的最大值为5. 九、均值不等式放缩 例32.设Sn?1?2?2?3???n(n?1).求证n(n?1)2?Sn?(n?1)22. 解析: 此数列的通项为a?k?k(k?1)?k?k?12n(n?1)2?k?12k(k?1),k?1,2,?,n. 12?k?n2, 2nn, )??k?Sn?k?1?k?1(k?即n(n?1)?S2n??(n?1)2. ab?a?b2注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式若放成 k(k?1)?k?1则得S?nn, ?(k?1)?k?12(n?1)(n?3)2?(n?1)22,就放过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里 n1a1???1an?na1?an?a1???ann?a1???ann2 其中,n?2,3等的各式及其变式公式均可供选用。 例33.已知函数 f(1)?f(2)???f(n)?n?12n?1f(x)?12. 11?a?2bx,若 f(1)?45,且f(x)在[0,1]上的最小值为1,求证: 2?解析: ?(1?f(x)?4xx1?4?1?11?4x?1?12?2x(x?0)?f(1)???f(n)?(1?12?2) 12?22)???(1?12?2n)?n?14(1?12???12n?1)?n?12n?1?12. 例34.已知a,b为正数,且1?1ab?1n,试证:对每一个n?N?,(a?b)?a?b?2nn2n?2n?1. 解析: 由1?1ab?1得ab?a?b,又(a?b)(1arnn?rr?1bnn)?2?nab?ba?4,故ab?a?b?4, 而(a?b)令 in?in?Ca0nn?Can1nn?1b???Cab???Cb, ???Cnabn?1n?1f(n)?(a?b)?an?bn1n?1rn?rr,则f(n)=Cnab???Cnab,因为 Cn?Cn,倒序相加得 1n?1n?1rn?rrrn?rn?1n?1n?12f(n)=Cn(ab?ab)???Cn(ab?ab)???Cn(ab?ab), nn?1而ab?abn?1???an?rb?abrrn?r???abn?1?an?1b?2abrnnn?2?42?2rn?rn?1, b)?(2n?2)?2r1则2f(n)=(Cn???Cn???Cnrn?1)(abrn?r?an?rb)?(2?2)(ab?an?rn?1, 所以f(n)?(2n?2)?2n,即对每一个n?N?,(a?b)n?an?bn?22n?2n?1. n?11n 例35.求证C解析: 不等式左 ?C2n?C???C3nnn?n?22(n?1,n?N) n?1C?C1n2n?C3n???Cnn?2?1?1?2?2???2n2n?1?n?1?2?2???2n2n?1=n?22, 原结论成立. 例36.已知f(x)?ex?e?x,求证:f(1)? 解析:f(x)?f(x12nf(2)?f(3)???f(n)?(e1ex1n?1?1)2 )?(ex1?1ex1)?(ex2?1ex2)?ex1?x2?eex1x2?eex2x1??ex2?ex1?x2?1 n 经过倒序相乘,就可以得到 例37.已知f(x)? 解析:(k?1)(2n?1?k?kx?1xf(1)?f(2)?f(3)???f(n)?(en?1?1)2n n,求证:f(1)?f(2)?f(3)???f(2n)?2(n?1) 12n?1?k)?k(2n?1?k)?k2n?1?k?2n?1?kk?1k(2n?1?k)?2(2n?1?k)?2 其中:k?1,2,3,?,2n1k,因为k?2n?k(1?k)?2n?(k?1)(2n?k)?0?12n?1?k)?2n?2 22nk(2n?1?k)?2n 所以(k?)(2n?1?k? 从而[f(1)?f(2)?f(3)???f(2n)]?(2n?2)?7,所以 f(1)?f(2)?f(3)???f(2n)?2(n?1)nn. 例38.若k 解析:2Sn?(1n?,求证:Sn)?(1?1n??1n?11?1n?21???11nk?1?32. 1nk?1?1n)1nk?1n?1nk?2)?(n?2?nk?3)???( ?1y?4x?y 因为当x?0,y当且仅当x?0时,x?y?2xy,1x?1y?2xy,所以(x?y)(1x?1y)?4,所以1x, ?y时取到等号. ?4n?nk?1? 4?4n?2?nk?3???4n?nk?1?4n(k?1)n?nk?1 所以2S 所以 32nn?1?nk?2Sn?2(k?1)1?k?1n?2(k?1)k?1?2?4k?1?32所以Sn?1n?1n?1?1n?2???1nk?1? 例39.已知 f(x)?a(x?x1)(x?x2),求证: a2f(0)?f(1)?a2. 16 解析:f(0)?f(1)?a2[x1(1?x1)][x2(1?x2)]?. 16 例40.已知函数f(x)=x2-(-1)k·2lnx(k∈N*).k是奇数, n∈N*时, 求证: [f’(x)]n-2n-1·f’(xn)≥2n(2n-2). 解析: 由已知得f?(x)?2x?(1)当n=1时,左式=(2x?(2)n?2, 左式=[f?(x)]n ?2(Cnxn1n?22x(x?0), 2x)?02x)?(2x?右式=0.∴不等式成立. 2x)?2nn?1?2n?1n?f?(x)?(2x??(2x?n2xn) ?Cnx2n?4???Cnn?21x2n?4?Cnn?11x1n?2). 令S?Cnx1n?2?Cnx2n????Cn4n?1n?4x?Cnn?1 xn?2 由倒序相加法得: 2S?Cn(x1n?2?1xn?2)?Cn(x2n?4?1xn?4)???Cnn?1(1xn?2?xn?2) ?2(Cn?Cn???Cn?(2?2). n12n?1)?2(2?2), n 所以S 所以[f?(x)]n?2n?1nnn?f?(x)?2(2?2)成立.综上,当 k是奇数,n?N?时,命题 成立 例41. (2007年东北三校)已知函数f(x)?ax?x(a?1) (1)求函数f(x)的最小值,并求最小值小于0时的a取值范围; (2)令S(n)?Cn1fx'(1)?Cnf(2)???Cn2'n?1f(n?1)求证:S(n)?(2n?2)?f(n) '2(1)由f(x)?alna?1,f(x)?0,即:alna?1,?a同理:f(x)?0,有x??log所以f(x)在(??,?log所以f(x)min?f(?log若f(x)min?0,即?a的取值范围是1aaxx?1lna,又a?1?x??logalna lna,?logalna)上递减,在(lna)?1?lnlnalnalna,??)上递增;a1?lnlnalna?0,则lnlna??1,?lna?11e1?a?ee22n?1n?1(2)S(n)?Cn(alna?1)?Cn(alna?1)???Cn?(Cna?Cna???Cna?12[C(a?ann1nn?12n2122n?1n?112(alna?1))n)lna?(Cn?Cn???Cnn?2n?1 )?C(a?an)???Cn?1n(an?1?a)]lna?(2?2)?a2(2?2)lna?(2?2)nn'n?(2?2)(a2lna?1)?(2?2)f(),2n所以不等式成立。