初中数学精英培养计2

2019-06-17 09:17

精英培养计划B方案

初中数学精英培养计划

序言

一、 把握数学的生活性——“使教学有生活味”

《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择和判断,进而解决问题,直接为社会创造价值”。这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。 现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。

二、 把握数学的美育性——“使教学有韵味”

数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。作为精神产品的数学就具有上述美的特点。

简练、精确是数学的美。数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。

数学很讲究它的逻辑美。数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。抽象的数学不正展示它的魅力吗?

数学上有很多知识是和对称有关的。对称给人协调,平稳的感觉,象圆,正方体等,它们的形式是如此的匀称优美。正是由于几何图形中有这些点对称、线对称、面对称,才构成了美丽的图案,精美的建筑,巧夺天工的生活世界,也才给我们带来丰富的自然美,多彩的生活美。

中学数学的美育性,除了上述一些方面,还有其它美妙的地方,只要我们用心挖掘和捕捉,就会发现数学蕴涵着如此丰富的美的因素,教师要善于挖掘美的素材,在学生感受美的同时既提高教学质量,又使教学韵味深厚。

1 / 75

精英培养计划B方案

第一章 兴趣数学

第一节七桥问题(一笔画问题)

18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡, 那里有七座桥。如图1所示:河中的小岛A与河的 左岸B、右岸C各有两座桥相连结,河中两支流间 的陆地D与A、B、C各有一座桥相连结。当时哥尼 斯堡的居民中流传着一道难题:一个人怎样才能一次 走遍七座桥,每座桥只走过一次,最后回到出发点? 大家都试图找出问题的答案,但是谁也解决不了这个 问题。

七桥问题引起了著名数学家欧拉(1707—1783)的关注。 他把具体七桥布局化归为图所示的简单图形,于是, 七桥问题就变成一个一笔画问题:怎样才能从A、B、 C、D中的某一点出发,一笔画出这个简单图形 (即笔不离开纸,而且a、b、c、d、e、f、g各条线 只画一次不准重复),并且最后返回起点?

欧拉经过研究得出的结论是:图是不能一笔画出的图形。这就是说,七桥问题是无解的。这个结论是如何产生呢?

2 / 75

精英培养计划B方案

如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。如果画笔经过一个n次,那么就有2n条线与该点相连结。因此,这个图形中除起点与终点外的各点,都与偶数条线相连。

如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。

综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。

图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。

欧拉定理 : 如果一个图是连通的并且奇顶点的个数等于0或2,

那么它可以一笔画出;否则它不可以一笔画出。

练习:你能笔尖不离纸,一笔画出下面的每个图形吗?试试看。(不走重复线路) 图例1

3 / 75

精英培养计划B方案

图例2

图例3

图例4

2四色问题

人人都熟悉地图,可是绘制一张普通的政区图,至少需要几种颜色,才能把相邻的政区或区域通过不同的颜色区分开来,就未必是一个简单的问题了。

4 / 75

精英培养计划B方案

这个地图着色问题,是一个著名的数学难题。大家不妨用一张中国政区图来试一试,无论从哪里开始着色,至少都要用上四种颜色,才能把所有省份都区别开来。所以,很早的时候就有数学家猜想:“任何地图的着色,只需四种颜色就足够了。”这就是“四色问题”这个名称的由来。

四色问题又称四色猜想,是世界近代三大数学难题之一。

四色问题的内容是:“任何一张地图只用四种颜色就能 使具有共同边界的国家着上不同的颜色。”用数学语言表示, 即“将平面任意地细分为不相重迭的区域,每一个区域总可 以用1,2,3,4这四个数字之一来标记,而不会使相邻 的两个区域得到相同的数字。”(右图)

这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。

5 / 75


初中数学精英培养计2.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:光辉学校班级安全管理制度

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: