精英培养计划B方案
数学史上正式提出“四色问题”的时间是在1852年。当时伦敦的大学的一名学生法朗西斯向他的老师、著名数学家、伦敦大学数学教授莫根提出了这个问题,可是莫根无法解答,求助于其它数学家,也没有得到答案。于是从那时起,这个问题便成为数学界的一个“悬案”。
一直到二十年前的1976年9月,《美国数学会通告》正式宣布了一件震撼全球数学界的消息:美国伊利诺斯大学的两位教授阿贝尔和哈根,利用电子计算机证明了“四色问题”这个猜想是完全正确的!他们将普通地图的四色问题转化为2000个特殊图的四色问题,然后在电子计算机上计算了足足1200个小时,作了100亿判断,最后成功地证明了四色问题,轰动了世界。
这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。 2 麦比乌斯带
每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以後那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。
6 / 75
精英培养计划B方案
3分割图形
分割图形是使我们的头脑灵活,增强观察能力的一种有趣的游戏。 我们先来看一个简单的分割图形的题目──分割正方形。 在正方形内用4条线段作“井”字形分割,可以把正方形分 成大小相等的9块,这种图形我们常称为九宫格。
用4条线段还可以把一个正方形分成10块,只是和九宫格不同的是,每块的大小不一定都相等。那么,怎样才能用4条线段把正方形分成10块呢?请你先动脑筋想想,在动脑的同时还要动手画一画 其实,正方形是不难分割成10块的,下面就是其中两种分割方法。
练习:想一想,用4条线段能将正方形分成11块吗?应该怎样分?
7 / 75
精英培养计划B方案
5数学故事
(1)奇特的墓志铭
在大数学家阿基米德的墓碑上,镌刻着一个有趣的几 何图形:一个圆球镶嵌在一个圆柱内。相传,它是阿基米 德生前最为欣赏的一个定理。
在数学家鲁道夫的墓碑上,则镌刻着圆周率π的35位 数值。这个数值被叫做。”鲁道夫数”。它是鲁道夫毕生心血 的结晶。
大数学家高斯曾经表示,在他去世以后,希望人们在他 的墓碑上刻上一个正17边形。因为他是在完成了正17边形 的尺规作图后,才决定献身于数学研究的??
不过,最奇特的墓志铭,却是属于古希腊数学家丢番 图的。他的墓碑上刻着一道谜语般的数学题: “过路人,这座石墓里安葬着丢番图。他生命的1/6 是幸福的童年,生命的1/12是青少年时期。又过了生命 的 1/ 7他才结婚。婚后 5年有了一个孩子,孩子活到他 父亲一半的年纪便死去了。孩子死后,丢番图在深深的悲 哀中又活了4年,也结束了尘世生涯。过路人,你知道丢 番图的年纪吗?” 丢番图的年纪究竟有多大呢?
8 / 75
精英培养计划B方案
设他活了X岁,依题意可列出方程。这样,要知道丢番图的年纪,只要解出这个方程就行了。
这段墓志铭写得太妙了。谁想知道丢番图的年纪,谁 就得解一个一元一次方程;而这又正好提醒前来瞻仰的人 们,不要忘记了丢番图献身的事业。
在丢番图之前,古希腊数学家习惯用几何的观点看待 遇到的所有数学问题,而丢番图则不然,他是古希腊第一 个大代数学家,喜欢用代数的方法来解决问题。现代解方程的基本步骤,如移项、合并同类项、,方程两边乘以同一因子等等,丢番图都已知道了。他尤其擅长解答不定方 程,发明了许多巧妙的方法,被西方数学家誉为这门数学 分支的开山鼻祖。
丢番图也是古希腊最后一个大数学家。遗憾的是,关 于他的生平。后人几乎一无所知,既不知道他生于何地, 也不知道他卒于何时。幸亏有了这段奇特的墓志铭,才知 道他曾享有84岁的高龄。 (2)希腊十字架问题
图上那只巨大的复活节彩蛋上有一个希腊十字架, 从它引发出许多切割问题,下面是其中的三个。 (a)将十字架图形分成四块,用它们拼成一个正方形;
有无限多种办法把一个希腊十字架分成四块,再把它们
9 / 75
精英培养计划B方案
拼成一个正方形,下图给出了其中的一个解法。 奇妙的 是,任何两条切割直线,只要与图上的直线分别平行, 也可取得同样的结果,分成的四块东西总是能拼出一个 正方形。
(b)将十字架图形分成三块,用它们拼成一个菱形;
(c)将十字架图形分成三块,用它们拼成一个矩形,要求其 长是宽的两倍。
第二章 最完美的数
完美数又称为完全数,最初是由毕达哥拉斯(Pythagoras)的信徒发现的,他们注意到:
数6有一个特性,它等于它自己的因子(不包括它自身)的和: 6=1+2+3,
下一个具有同样性质的数是28, 28=1+2+4+7+14 接着是496和8128.他们称这类数为完美数. 欧几里德在大约公元前350-300年间证明了: 若2n-1是素数,则数 2n-1[2n-1] (1) 是完全数.
两千年后,欧拉证明每个偶完全数都具有这种形式.这就在完全数与梅森数(形式为
2n?1的素数)之间建立了紧密的联系,到
1999年6月1日为止,共发现了38个梅森素数,这就是说已发现了38
10 / 75