《数字信号处理与DSP实现技术》课后习题与参考答案(4)

2020-04-16 13:15

列出下列表格。

m -9 -8 -7 -6 -5 -4 -3 -2 -1 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1 3 1 4 1 5 0 6 0 7 0 8 0 9 0 x1(m) x2(?m) x2(1?m) x2(2?m) -1 -1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 x2(3?m) x2(4?m) x2(5?m) x2(6?m) x2(7?m) x2(8?m) x2(9?m) -1 -1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 1 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 1 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 1 0 0 0 0 0 0 x2(10?m) x2(11?m) x2(12?m) x2(13?m) -1 -1 -1 -1 -1 1 0 0 0 0 0 -1 -1 -1 -1 -1 1 0 0 0 0 -1 -1 -1 -1 -1 1 0 0 0 -1 -1 -1 -1 -1 1 0 0 x2(14?m) -1 -1 -1 -1 -1 1 0 x2(15?m) -1 -1 -1 -1 -1 1 1 1 1 1 则:当n?0时,y1(n)?0,y1(0)?1,y1(1)?2,y1(2)?3,y1(3)?4,y1(4)?5,

y1(5)?3,y1(6)?1,y1(7)??1,y1(8)??3,y1(9)??5, y1(10)??4,y1(11)??3,y1(12)??2,y1(13)??1,y1(14)?0,

(2)令y2(n)?x1(n)?x2(n)?{m?0?[x(m)x((n?m))12910]R10(n)},由已知得

?1,0?m?4?1,0?m?4?1,?4?m?0,x2(m)??,x2(?m)?? x1(m)???0,5?m?9??1,5?m?9??1,?9?m??5?1,m?rT?0?x2((?m))10???1,rT?1?m?rT?5,T?10,r?0,?1,?2,...?1,rT?6?m?rT?9?r=0x2(-m)r=-2r=-1x2((-m))10r=+1

-9 -8 -7-6 -5-4 -3 -2 -10 1 2 3 4m-20-15-9 -8 -7 -6 -5-10 -4 -3 -2 -10 1 2 3 4 56 7 8 9 10m 16

列出下列表格 m 0 1 2 3 4 5 6 7 8 9 x1(m)R10(m) 1 1 1 1 1 0 0 0 0 0 x2((?m))10R10(m) 1 -1 -1 -1 -1 -1 1 1 1 1 x2((1?m))10R10(m) 1 1 -1 -1 -1 -1 -1 1 1 1 x2((2?m))10R10(m) 1 1 1 -1 -1 -1 -1 -1 1 1 x2((3?m))10R10(m) 1 1 1 1 -1 -1 -1 -1 -1 1 x2((4?m))10R10(m) 1 1 1 1 1 -1 -1 -1 -1 -1 x2((5?m))10R10(m) -1 1 1 1 1 1 -1 -1 -1 -1 x2((6?m))10R10(m) -1 -1 1 1 1 1 1 -1 -1 -1 x2((7?m))10R10(m) -1 -1 -1 1 1 1 1 1 -1 -1 x2((8?m))10R10(m) -1 -1 -1 -1 1 1 1 1 1 -1 x2((9?m))10R10(m) -1 -1 -1 -1 -1 1 1 1 1 1 x2((10?m))10R10(m) 1 -1 -1 -1 -1 -1 1 1 1 1 所以:

99y2(0)?{?[x1(m)x2((0?m))10]}R10(n)??3,y2(1)?{?[x1(m)x2((1?m))10]}R10(n)??1

m?0m?0?99y2(2)?{[x1(m)x2((2?m))10]}R10(n)?1,y2(3)?{?[x1(m)x2((3?m))10]}R10(n)?3

m?0m?099y2(4)?{?[x1(m)x2((4?m))10]}R10(n)?5,y2(5)?{?[x1(m)x2((5?m))10]}R10(n)?3

m?0m?099y2(6)?{?[x1(m)x2((6?m))10]}R10(n)?1,y2(7)?{?[x1(m)x2((7?m))10]}R10(n)??1

m?0m?099y2(8)?{?[x1(m)x2((8?m))10]}R10(n)??3,y2(9)?{?[x1(m)x2((9?m))10]}R10(n)??5

m?0m?0

3.设序列x(n)={1,3,2,1;n=0,1,2,3 },另一序列h(n) ={1,2,1,2;n=0,1,2,3}, (1)求两序列的线性卷积 yL(n); (2)求两序列的6点循环卷积yC(n)。

(3)说明循环卷积能代替线性卷积的条件。 ?解:(1)yL(n)?x(n)*h(n)?n?m)

m?x(m)h(???x(m)?{1,3,2,1;m?0,1,2,3} h(?m)?{2,1,2,1;m??3,?2,?1,0}

因此:yL(0)?1,yL(1)?1?2?3?1?5

yL(2)?1?1?3?2?2?1?9,yL(3)?1?2?3?1?2?2?1?1?10

17

17

yL(4)?3?2?2?1?1?2?10,yL(5)?2?2?1?1?5

yL(6)?1?2?2,其余n是,yL(n)=0

(2) yC(n)?x(n)?h(n)?m?0?{x(m)[h((n?m))R(n)]}

66N?1x(m)?{1,3,2,1;m?0,1,2,3}

x(m)R6(m)?{1,3,2,1,0,0;m?0,1,2,3,4,5}

h(?m)?{2,1,2,1;m??3,?2,?1,0}

h((?m))6?{...,2,1,2,1,0,0,2,1,2,1,0,0,...;m?...,?3,?2,?1,0,1,2,3,4,5,6,7,8,...} h((?m))6R6(m)?{1,0,0,2,1,2;m?0,1,2,3,4,5} h((1?m))6R6(m)?{2,1,0,0,2,1;m?0,1,2,3,4,5} h((2?m))6R6(m)?{1,2,1,0,0,2;m?0,1,2,3,4,5} h((3?m))6R6(m)?{2,1,2,1,0,0;m?0,1,2,3,4,5} h((4?m))6R6(m)?{0,2,1,2,1,0;m?0,1,2,3,4,5} h((5?m))6R6(m)?{0,0,2,1,2,1;m?0,1,2,3,4,5}

h((6?m))6R6(m)?{1,0,0,2,1,2;m?0,1,2,3,4,5}?h((?m))6R6(n)

所以

yC(0)?x(n)?h(n)??[x(m)h((?m))6]R6(n)?1?1?3?0?2?0?1?2?0?1?0?2?3m?0N?1yC(1)?x(n)?h(n)??[x(m)h((1?m))6]R6(n)?1?2?3?1?2?0?1?0?0?2?0?1?5m?0N?1yC(2)?x(n)?h(n)??[x(m)h((2?m))6]R6(n)?1?1?3?2?2?1?1?0?0?0?0?2?9m?0N?1yC(3)?x(n)?h(n)??[x(m)h((3?m))6]R6(n)?1?2?3?1?2?2?1?1?0?0?0?0?10m?0N?1yC(4)?x(n)?h(n)??[x(m)h((4?m))6]R6(n)?1?0?3?2?2?1?1?2?0?1?0?0?10m?0N?1yC(5)?x(n)?h(n)??[x(m)h((5?m))6]R6(n)?1?0?3?0?2?2?1?1?0?2?0?1?5

m?0N?118

(3)循环卷积能代替线性卷积的条件是循环卷积的长度不得小于线性卷积的长度。

4. 如果一台计算机的速度为平均每次复乘30ns ,每次复加3ns,用它来计算256点的有限长序列的DFT,问直接计算需要多少时间,用FFT 运算需要多少时间。

2N?30?N(N?1)?3?2161920, 答:直接计算:

Nlog2N?30?log2N?3?368642用FFT计算:

5. 两个有限长序列x(n)和y(n)的零值区间为:

x(n)?0,n?0,100?n

y(n)?0,n?0,150?n对每个序列作245点DFT,即

X(k)?DFT[x(n)],k?0,1,?,244

Y(k)?DFT[y(n)],k?0,1,?,244如果

F(k)?X(k)?Y(k),k?0,1,?,19

f(n)?IDFT[F(k)],k?0,1,?,19试问在哪些点上f(n)?x(n)*y(n),为什么?

6. N=16 时,画出基-2 DIT及DIF的FFT 流图(时间抽取采用输入倒位序,输出自然数顺序,频率抽取采用输入自然顺序,输出倒位序)。 解:DIT-FFT:

x(0)x(8)x(4)x(12)x(2)x(10)x(6)x(14)x(1)x(9)x(5)x(13)x(3)x(11)x(7)x(15)W160-1W160-1W160-1W160W164-1-1W160W160-1W160W164-1-1W162W164W166-1-1-1W160-1W160-1W160-1W160W164-1-1W160W160-1W160W164-1-1W162W164W166-1-1W160W161W162W163W164-1-1-1-1-1-1-1-1-1-1X(0)X(1)X(2)X(3)X(4)X(5)X(6)X(7)X(8)X(9)X(10)X(11)X(12)X(13)X(14)X(15)-1W165W166W167

19

19

DIF-FFT:

x1(0)x(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)x(8)x(9)x(10)x(11)x(12)x(13)x(14)x(15)-1-1-1-1-1-1-1-1-1-1W160W161W162W163W164W165W166W167-1-1-1-1-1-1-1-1W162x1(1)x1(2)x1(3)W160x2(0)x2(1)-1-1W160W164-1W160-1W160-1-1W160W164-1W160-1W160X(0)X(8)X(4)X(12)X(2)X(10)X(6)X(14)X(1)-1-1-1W160W164-1W160X(9)X(5)W160X(13)X(3)-1-1-1W160W164-1W160W160X(11)X(7)X(15)W164x2(2)W166x2(3)x1(0)x1(1)x1(2)x1(3)W160x2(0)W162W164W166x2(1)x2(2)x2(3)

第5章 数字滤波器的结构思考题 1.数字滤波器结构的表示方法有哪些?

2.画出下列数字滤波器的框图

(1)y(n)?3y(n?1)?5y(n?2)?7x(n)?9x(n?1)

2z?1?5z?2(2)H(z)? ?1?2?31?z?3z?4z2.画出下列数字滤波器的流图

(1)y(n)?6y(n?1)?5y(n?2)?4x(n)?3x(n?1)

3?2z?1?5z?2(2)H(z)? ?1?2z?6z3.用直接I型和直接II型实现下列系统函数:

2?7z?1?5z?2H(z)?

1?2z?1?3z?2z-1z-1z-1z-175-2-3直接I型:

20


《数字信号处理与DSP实现技术》课后习题与参考答案(4).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:IPad的整体概念层次分析

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: