2016最新高考复习材料,很实用哦~~
a4的等差中项.
(1)求数列{an}的通项公式;
1(2)若bn=anlog2n,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的正整数
n的最小值.
[解] (1)设等比数列{an}的首项为a1,公比为q,
依题意,有2(a3+2)=a2+a4,
代入a2+a3+a4=28,得a3=8,
∴a2+a4=20,
3 a1q+a1q=20,∴ 2 a3=a1q=8,
1 q= q=2,解之得 或 2
a1=2 a1=32,
又{an}单调递增,
∴q=2,a1=2,∴an=2n.
1(2)bn=2n·n=-n·2n, 2
∴-Sn=1×2+2×22+3×23+…+n×2n,①
∴-2Sn=1×22+2×23+3×24+…+(n-1)×2n+n·2n+1,②
∴①-②得Sn=2+2+2+…+2-n·2
123nn+12 1-2n =-n·2n+1=2n+1-n·2n+1-2-2,
∴Sn+n·2n+1>50,即2n+1-2>50,
∴2n+1>52,
又当n≤4时,2n+1≤25=32<52,
当n≥5时,2n+1≥26=64>52.
故使Sn+n·2n+1>50成立的正整数n的最小值为5.
[B级 能力提升练]
SS1.设等差数列{an}的前n项和为Sn,且满足S15>0,S16<0,则aa12