[数学]2012新题分类汇编:解析几何(高考真题+模拟新题)(2)

2019-07-30 13:29

系x′Oy′(其中y′轴与y轴重合)所在的平面为β,∠xOx′=45°.

(1)已知平面β内有一点P′(22,2),则点P′在平面α内的射影P的坐标为________; (2)已知平面β内的曲线C′的方程是(x′-2)2+2y′2-2=0,则曲线C′在平面α内的射影C的方程是______________.

课标理数14.H3[2011·湖北卷] (2,2) (x-1)2+y2=1 【解析】 (1)过点P′作PP′⊥α,垂足为P,过P作PM⊥y轴于M,连接P′M,则∠P′MP=45°.又MP′=22,所以MP=22cos45°=2.所以点P(2,2).

(2)设曲线C′上任意一点为(x′,y′),则该点在平面α内的射影为(x,y),故有

??2x′=x,?x′=2x,2? 即? 代入(x′-2)2+2y′2-2=0中,得(x-1)2+y2-1=0,

?y′=y,??y′=y,

即(x-1)2+y2=1.

课标文数13.H3[2011·辽宁卷] 已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为________.

课标文数13.H3[2011·辽宁卷] (x-2)2+y2=10 【解析】 设圆心坐标为(x,0),则有?x-5?2+1=?x-1?2+9,解得x=2.由两点距离得r=?2-5?2+1=10,所以圆的方程为(x-2)2+y2=10.

课标文数20.H3,H4[2011·课标全国卷] 在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.

(1)求圆C的方程;

(2)若圆C与直线x-y+a=0交于A、B两点,且OA⊥OB,求a的值.

课标文数20.H3,H4[2011·课标全国卷] 【解答】 (1)曲线y=x2-6x+1与y轴的交点为(0,1),与x轴的交点为(3+22,0),(3-22,0).

故可设C的圆心为(3,t),则有32+(t-1)2=(22)2+t2,解得t=1. 则圆C的半径为32+?t-1?2=3. 所以圆C的方程为(x-3)2+(y-1)2=9. (2)设A(x1,y1),B(x2,y2),其坐标满足方程组

??x-y+a=0,

? 22

??x-3?+?y-1?=9.?

消去y,得到方程

2x2+(2a-8)x+a2-2a+1=0.

第 6 页 共 86 页

由已知可得,判别式Δ=56-16a-4a2>0.从而 a2-2a+1

x1+x2=4-a,x1x2=.①

2由于OA⊥OB,可得x1x2+y1y2=0. 又y1=x1+a,y2=x2+a,所以 2x1x2+a(x1+x2)+a2=0.②

由①,②得a=-1,满足Δ>0,故a=-1.

大纲文数3.H3[2011·四川卷] 圆x2+y2-4x+6y=0的圆心坐标是( ) A.(2,3) B.(-2,3) C.(-2,-3) D.(2,-3)

大纲文数3.H3[2011·四川卷] D 【解析】 圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3),选D.

大纲理数8.H3[2011·重庆卷] 在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( )

A.52 B.102 C.152 D.202

1

所以四边形ABCD的面积为S=|AC||BD|=102.故选B.

2

第 7 页 共 86 页

课标文数4.H4[2011·安徽卷] 若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为( )

A.-1 B.1 C.3 D.-3

课标文数4.H4[2011·安徽卷] B 【解析】 圆的方程可化为(x+1)2+(y-2)2=5,因为直线经过圆的圆心(-1,2),所以3×(-1)+2+a=0,得a=1.

课标理数17.H7,H3,H4[2011·福建卷] 已知直线l:y=x+m,m∈R.

(1)若以点M(2,0)为圆心的圆与直线l相切于点P,且点P在y轴上,求该圆的方程; (2)若直线l关于x轴对称的直线为l′,问直线l′与抛物线C:x2=4y是否相切?说明理由.

法二:

(1)设所求圆的半径为r,则圆的方程可设为(x-2)2+y2=r2.

4+m=r,??

依题意,所求圆与直线l:x-y+m=0相切于点P(0,m),则?|2-0+m|

=r,?2?

2

2

?m=2,

解得?

?r=22.

所以所求圆的方程为(x-2)2+y2=8.

第 8 页 共 86 页

(2)同解法一.

图1-4

课标文数18.H3,H4,H7[2011·福建卷] 如图1-4,直线l:y=x+b与抛物线C:x2

=4y相切于点A.

(1)求实数b的值;

(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

?y=x+b,?课标文数18.H3,H4,H7[2011·福建卷] 【解答】 (1)由?2得x2-4x-4b=0.(*)

??x=4y

因为直线l与抛物线C相切, 所以Δ=(-4)2-4×(-4b)=0. 解得b=-1.

(2)由(1)可知b=-1,故方程(*)即为x2-4x+4=0. 解得x=2,代入x2=4y,得y=1, 故点A(2,1).

因为圆A与抛物线C的准线相切,

所以圆A的半径r等于圆心A到抛物线的准线y=-1的距离,即r=|1-(-1)|=2. 所以圆A的方程为(x-2)2+(y-1)2=4.

课标文数8.H4[2011·广东卷] 设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则C的圆心轨迹为( )

A.抛物线 B.双曲线 C.椭圆 D.圆

课标文数8.H4[2011·广东卷] A 【解析】 设圆心C的坐标C(x,y),由题意知y>0,则圆C的半径为y,由于圆C与已知圆相外切,则由两圆心距等于半径之和,得x2+?y-3?2=1+y,整理得:x2=8(y-1),所以轨迹为抛物线.

课标文数14.H4,H2[2011·湖北卷] 过点(-1,-2)的直线l被圆x2+y2-2x-2y+1=0截得的弦长为2,则直线l的斜率为________.

第 9 页 共 86 页

17

课标文数14.H4,H2[2011·湖北卷] 1或 【解析】 由题意,直线与圆要相交,斜率

7必须存在,设为k,则直线l的方程为y+2=k(x+1).又圆的方程为(x-1)2+(y-1)2=1,圆心为(1,1),半径为1,所以圆心到直线的距离d=17

k=1或.

7

课标文数15.H4,K3[2011·湖南卷] 已知圆C:x2+y2=12,直线l:4x+3y=25. (1)圆C的圆心到直线l的距离为________;

(2)圆C上任意一点A到直线l的距离小于2的概率为________. 1课标文数15.H4,K3[2011·湖南卷] (1)5 (2)

6【解析】 (1)圆心到直线的距离为:d=|k-1+k-2|

1+k2=1-?

22?2

=,解得?2?2

|-25|

=5; 32+42

图1-4

(2)当圆C上的点到直线l的距离是2时有两个点为点B与点D,设过这两点的直线方程为4x+3y+c=0,同时可得到的圆心到直线4x+3y+c=0的距离为OC=3,

又圆的半径为r=23,可得∠BOD=60°,由图1-2可知点A在弧BD上移动,弧长lBD11c

lBD=×c=,圆周长c,故P(A)==.

66c6

课标文数20.H3,H4[2011·课标全国卷] 在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.

(1)求圆C的方程;

(2)若圆C与直线x-y+a=0交于A、B两点,且OA⊥OB,求a的值.

课标文数20.H3,H4[2011·课标全国卷] 【解答】 (1)曲线y=x2-6x+1与y轴的交点为(0,1),与x轴的交点为(3+22,0),(3-22,0).

故可设C的圆心为(3,t),则有32+(t-1)2=(22)2+t2,解得t=1. 则圆C的半径为32+?t-1?2=3. 所以圆C的方程为(x-3)2+(y-1)2=9.

第 10 页 共 86 页


[数学]2012新题分类汇编:解析几何(高考真题+模拟新题)(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:某规划说明范本-修建性详规

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: