【例7】 新天地广场运进一批新款式彩色电视机,第一天售出总数的一半多10台,第二天售出剩下的一半多20台,还剩95台.这批新款彩电有多少台?
分析:根据题意可画出线段示意图进行倒推还原.
由示意图可知:95台加上20台正好是剩下的一半,所以用(95+20)×2=剩下的台数;剩下的台数加上10台,正好是总数的一半,于是可求出这批彩电的台数.
[(95+20)×2+10]×2=480(台).
【例8】 村姑卖蛋,第一次卖出一篮的一半又二个;第二次卖出余下的一半又二个;第三次卖出再剩下的一半又二个,这时篮里只剩下二十个蛋.这篮鸡蛋有多少个?
从上面线段图可以看出:最后剩下20个再加上第三次卖出的再余下的一半以外的2个,就是再余下的一半,由此可求出再余下的是:(20+2)×2=44(个).44个再加上第二次卖出余下的一半以外的2个就是余下的一半,因此可求出余下的是:(44+2)×2=92(个).92个再加上第一次卖出一篮的一半以外的2个就是全篮的一半,因此可求出全篮鸡蛋的个数是(92+2)×2=188(个).
【例9】 A,B,C三位小朋友都有若干本图书,如果A将自己的书给B,C,使B,C的书各增加一倍i然后B又将现有的图书给A,C,使A,C现有的图书各增加一倍;最后C再将自己已有的图书给A,B,使A,B的图书各增加一倍,这时三人的图书都是240本.A,B,C三位小朋友原来各有图书多少本?
分析:如图:
A B C
第一次 390 210 120
第二次 60 420 240
第三次 120 120 480
240 240 240
【例10】 三人存款不等,只知如果甲给乙40元,乙又给丙30元,丙再给甲20元,给乙70元,这时三人都有240元.三人原来各有存款多少元?
分析:甲原有:240-20+40=260(元);乙原有:240-70+30-40=160(元);丙原有:240+20+70-30=300(元).
附加内容
【附1】 林林1999年上四年级,他出生年份的各位数字之和是最大的一位数的3倍,问他1999年几岁?
分析:他出生于1989年,1999年时他10岁.
【附2】 有代号为A,B,C,D的四位小朋友共有课外读物200本.为了广泛阅读,A给B 13本;B给C 18本;C给D 16本;D给A2本,这时四个人的本数相等.他们原来各有多少本课外读物?
分析:根据已知条件知道,四个小朋友共有课外读物200本,经过互相交换之后这200本的总数没有变化,当四个人的本数相等时,每个人的本数是200÷4=50(本),用倒推的解题方法,可从“50本”人手,把收进的减去,把给出的加上,就可得到各人原有读物的本数:A原有读物本数:50+13—2=61(本);B原有读物本数:50+18—13=55(本);C原有读物本数:50+16—18=48(本);D原有读物本数:50+2—16=36(本).
大显身手
1. 小樱今年16岁,小桃今年11岁,几年后,小樱和小桃的年龄之和是45岁?
分析:小樱和小桃今年年龄和为16+11=27(岁).小樱和小桃经过45—27=18(年)两人的年龄之和是45岁时.这时,小樱和小红每人经过的年数都为:18÷2=9(年).
2. 已知明明今年2岁,爸爸今年28岁,那么请问11年后爸爸的年龄是小明的年龄的多少倍?
分析:(28+11)÷(2+11)=39÷13=3(倍).
3. 小龟问老龟:“老爷爷,您今年多少岁?”老龟说:“把我的年龄加上20,再缩小2倍之后减去15,再扩大3倍,正好是105岁.你能算出我今年多少岁吗?”
分析:(法1)根据题意,从最后一个条件105岁开始倒推:最后的数扩大3倍是105岁,如果没扩大3倍,应该是105÷3=35(岁);这个35岁是减去15得到的,如果没减去15,应该是35+15=50(岁);这个50岁是缩小2倍后得到的,如果没有缩小2倍,应该是50×2=100(岁);这个100岁是老龟的年龄加上20后得到的,那么老龟的年龄应该是80岁.
(法2)设老龟今年x岁.依题意有[(x+20)÷2—15]×3=105.解得x=80.
4. 小红、小芳、小明三人分苹果,小红得的比总数的一半多1个,小芳得的比剩下的一半多1个,小明得8个.问原来共有苹果多少个?
分析:小明得8个是因为小芳得到剩下的一半多1个,如果小芳只得了剩下的一半,那么小明应得8+1=9(个),也就是得了剩下的另一半,这样也就说明了小芳得了10个,因此可以算出小红取去后剩下的是9×2=18(个).根据同样的道理,如果小红得的是总数的一半,那么剩下的应该有18+1=19(个).那么苹果总数应该是19×2=38(个).即[(8+1)×2+1]×2=38(个).
成长故事
老鹰和火鸡
有一群火鸡看着老鹰张著翅膀自由自在地在天上翱翔,十分的羡慕.于是和老鹰的头头商量是否能够派一个教练来教他们飞行的方法,老鹰头头爽快的答应下来.
老鹰教练很有耐心地教导火鸡张开翅膀学飞行:翅膀张开,用力地拍!火鸡们在老鹰教练的大力指导下拼命地张着翅膀、用力地拍,它们好高兴自己会飞了,虽然飞得不是很高,但是它们已经会飞了! 太阳西下,该是下课回家的时候了,老鹰教练对它们说:你们今天好棒!你们都飞得很好,你们可以飞了!太阳下山了,我也要回家了!结果呢?老鹰是飞着回家,火鸡仍然是走路回家.
第四讲 行程问题初步
在春季班时我们已经学习了简单的行程问题——相遇问题的基本类型(两人单次直线相遇),同学们,你们还记得做行程问题的基本工具是什么吗?没错,就是画“线段图”.今天我们将学习更加复杂的相遇问题.先来回顾一下相遇问题的基础知识吧!
你还记得吗?
1. 孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?
分析:建议教师画线段图.我们可以先求出2小时孙悟空和猪八戒走的路程:(200+150)×2=700(千米),又因为还差500米,所以花果山和高老庄之间的距离:700+500=1200(千米).
2. 甲乙两辆汽车分别从A、B两地出发相向而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行5O千米,5小时相遇,求A、B两地间的距离.
分析:这题不同的是两车不“同时”.(法1 )求A、B两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48×(1+5)=288(千米),5O×5=25O(千米),288+25O=538(千米).
(法2 )还可以先求出甲、乙两车5小时所行的路程和,再加上甲车1小时所行的路程.(48+5O)×5=49O(千米),49O+48=538(千米).
3. 甲乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?
分析:240÷(240÷4+240÷6)=2.4(小时).
4. 南辕与北辙两位先生对于自己的目的地S城的方向各执一词,于是两人都按照自己的想法驾车分别往南和往北驶去,南辕先生出发2小时后北辙先生才出发,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?
分析:两人虽然不是相对而行,但是题目要求的仍是路程和.50×2+(50+60)×5=650(千米).
暑假精讲
【例1】 两地相距3200米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行78米,已经行了15分钟,还要行多少分钟两人可以相遇?
分析:(法1)[3200-(82+78)×15] ÷(82+78)=5(分钟); (法2) 3200 ÷(82+78)-15=5(分钟).
【例2】 李明和王亮同时分别从两地骑车相向而行,李明每小时行18千米,王亮每小时行16千米,两人相遇时距全程中点3千米.问全程长多少千米?
分析:根据题意,画个草图,能帮助我们找出数量关系.依题意作行程草图如下:
李明走了全程的一半多3千米,王亮走了全程的一半少3千米,李明比王亮实际多走了3×2=6(千米).由已知李明每小时比王亮多走18—16=2(千米),那么多少小时李明比王亮多行6千米呢?需要6÷2=3(小时),这就是两人的相遇时间,有了相遇时间,全程就容易求出了.相遇时李明比王亮多行的路程3×2=6(千米),李明比王亮每小时多行的路程18-16=2(千米),两人相遇时间6÷2=3(小时),全程(18+16)×3=102(千米).
【例3】 甲乙两人同时从两地相向而行.甲每小时行5千米,乙每小时行4千米.两人相遇时乙比甲少行3千米.两地相距多少千米?
分析:两人行驶的时间为3÷(5-4)=3小时,所以两地相距(5+4)×3=27千米.
【例4】 两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?
分析:甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了同时相对而行,把相同方向行走时乙用的时间和返回时相对而行的时间相加,就是共同经过的时间.乙到达目标时所用时间:900÷100=9(分钟)甲9分钟走的路程:80×9=720(米)甲距目标还有:900—720=180(米)相遇时间:180÷7(100+80)=1(分钟),共用时间:9+1=10(分钟).
简便解:画图可知两人总共走了2个全程,所以总全程为1800,所以时间为1800÷(80+100)=10分钟.
【例5】 一个圆形操场跑道的周长是500米,两个学生同时同地相背而行.甲每分钟走66米,乙每分钟走59米.经过几分钟才能相遇?
分析:500÷(66+59)=500÷125=4分钟.