2014暑期三升四奥数辅导教案(5)

2018-11-27 10:14

【例6】 甲乙两辆汽车同时分别从A、B两地相对开出,甲车每小时行42千米,乙车每小时行45千米.甲、乙两车第一次相遇后继续前进,甲、乙两车各自到达B、A两地后,立即按原路原速返回.两车从开始到第二次相遇共用6小时.求A、B两地的距离.

分析:甲、乙两车从出发到第一次相遇共同行完一个AB间的路程,第一次相遇后继续前进,各自到B、A两地后,又共同行完一个AB间的路程.当甲、乙两车第二次相遇时,又共同行完一个AB间的路程.因此,甲、乙两车从开始到第二次相遇共行3个AB间的路程.甲、乙速度和42+45=87(千米),3个AB间路程87×6=522(千米),A、B相距522÷3=174(千米).

【例7】 阿呆和阿瓜同时从距离20千米的两地相向而行,阿呆每小时走6千米,阿瓜每小时走4千米.阿瓜带着一只小狗,狗每小时走10千米.这只狗同阿瓜一道出发碰到阿呆的时候,它就掉头朝阿瓜这边走,碰到阿瓜时又朝阿呆那边走,直到两人相遇,问这只小狗一共走了多少千米?

分析:要求狗走的路程,由于狗在两人之间要跑多少个来回,每一次所用的时间是多少,这些量无法确知,所以不可能把每次狗与两人相遇走的路程分别求出再相加.仔细分析整个过程,抓住其中不变的关系:不论狗在两人之间跑了多少个来回,狗走的路程所用的总时间等于两人相遇所用的时间.所以,只要求出两人相遇所用的时间,就可以求出狗所走的路程.这样,问题就转化为求志强与蓝利亚两人相遇时间的问题.相遇时间20÷(6+4)=2(小时),狗共跑路程10×2=20(千米).

【例8】 甲骑自行车每小时行18千米,乙步行每小时行6千米,如果两人同时在同一地点同一方向出发,甲走了48千米到达某地,立即按原路返回,在途中和乙相遇.问:从出发到相遇共经过多少时间?

分析:由题意知,甲走了48千米到达某地说明全程为48千米,甲乙从出发到相遇共行了两个全程,则再依两人的速度和,求出相遇时间.所以甲乙速度和为18+6=24(千米).甲乙的相遇时间为48×2÷24=4(小时).

【例9】 一辆汽车和一辆摩托车同时从甲乙两地相对开出,摩托车每小时行54千米。汽车每小时行48千米.两车相遇后又以原来的速度继续前进,摩托车到乙地立即返回.汽车到甲地立即返回.两车在距离中点108千米的地方再次相遇,那么甲乙两地的路程是多少千米?

分析:第二次相遇距中点108千米,说明两车共有108×2=216(千米)的路程差,由此可知两车共行216÷(54-48)=36(小时).又因为第二次相遇两车共走了3个全程,所以走一个全程用36÷3=12(小时).记可求出甲乙两地的路程是(54+48)×12=1224(千米).

附加内容

【附1】 甲乙两人同时从AB两地相向而行,第一次相遇在距A地的75米,两人到达AB后又立即返回,第二次相遇距离B地50千米.求AB两地的距离.

分析:相同时间内(两个人都没有停过),两个人每走过与全程的距离相等的时候,所经过的距离都和第一次相遇时所走过的距离是相等的.在第二次相遇时两个人一共走了相当于三个全程的距离,这时甲应该是走过了75×3=225(千米),而从图上可知甲走过全程后又走过50米,所以全程距离应该是225-50=175千米.

【附2】 有一个自行车队,以每小时35千米的速度前进,甲选手突然发力,以每小时45千米的速度前进,车队速度不变,当甲选手行进了10千米后掉头返回,问再过多久可以与自行车队相遇?

分析:甲走10千米的时间为10?45?22(小时),车队走的时间也是(小时),车队走的路程是:99270702035???(千米),此时车队与甲相距10?(千米),甲掉头返回与车队相遇的时间为

9999201?(35?45)?(小时). 936

大显身手

1. 某工程兵修铁路开凿山洞的长是300米,两个班从两端开始凿山洞,甲班每天凿出5米,乙班每天凿出6米,同时开凿多少天后,还差80米没有凿通?

分析:(300-80)÷(5+6)=20(天).

2. 两列货车从相距450千米的两个城市相向开出,甲货车每小时行38千米,乙货车每小时行40千米,同时行驶4小时后,还相差多少千米没有相遇?

分析:450-(38+40)×4=138(千米).

3. 甲乙两列客车同时由相距680千米的两地相对出发,甲客车每小时行42千米,经过8小时后相遇.问乙列客车每小时行多少千米?

分析:680÷8-42=43(千米/时).

4. 甲乙两列火车从相距366千米的两个城市对面开来,甲列火车每小时行37千米,乙列火车每小时行36千米,甲列火车先开出2小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?相遇时两列火车各行多少千米?

分析:(366-37×2)÷(37+36)=4(小时).

成长故事 砌墙工人的命运

三个工人在砌一堵墙.有人过来问:“你们在干什么?”第一个人没好气地说:“没看见吗?砌墙.”第二个人抬头笑了笑,说:“我们在盖一幢高楼.”第三个人边干边哼着歌曲,他的笑容很灿烂开心:“我们正在建设一个新城市.” 10年后,第一个人在另一个工地上砌墙;第二个人坐在办公室中画图纸,他成了工程师;第三个人呢,是前两个人的老板.

第五讲 奇数与偶数

春季班我们在学习能被2,3,5整除的数的特征时介绍能被2整除的数的个位数是0,2,4,6,8,称为偶数;不能被2整除的数的个位数是1,3,5,7,9,称为奇数.那么今天我们就具体来学习一下奇数与偶数的重要性质.

你还记得吗?

1. 不算出结果,直接判断下列各式的结果是奇数还是偶数: (1)1+2+3+?+9+10; (2)1+3+5+?+21+23;

分析:(1)奇数;(2)偶数.

2. 不算出结果,判断数(524+42-429)是偶数还是奇数?

分析:根据奇偶数的运算性质:因为524,42是偶数,所以(524+42)是偶数.又因为429是奇数,所以(524+42-429)是奇数.

提示:在全部是加、减法的运算中,若参加运算的奇数的个数是偶数,则结果是偶数;若参加运算的奇数的个数是奇数,则结果是奇数.

3. 1×3×5×7×9×11×12×13的积是偶数还是奇数?

分析:1,3,5,7,9,11,13都是奇数,由1×3为奇数,推知1×3×5为奇数??推知1×3×5×7×9×11×13为奇数.因为12为偶数,所以(1×3×5×7×9×11×13)×12为偶数,即1×3×5×7×9×11×12×13为偶数.

4. 在1~199中,有多少个奇数?有多少个偶数?其中奇数之和与偶数之和谁大?大多少?

分析:由于1,2,3,4,?,197,198,199是奇、偶数交替排列的,从小到大两两配对:(1,2),(3,4),?,(197,198),还剩一个199,共有198÷2=99(对),还剩一个奇数199.所以奇数的个数=198÷2+1=100(个),偶数的个数=198÷2=99(个).因为每对中的偶数比奇数大1,99对共大99,而199-99=100,所以奇数之和比偶数之和大,大100.

暑假精讲

奇数和偶数的表示方法: 偶数表示方法:如果我们用n表示整数,n=0,1,2,3,??那么2×n就表示偶数,简写成2n. 奇数表示方法:因为2n为偶数,比2n多1或少1的数为奇数.所以我们用2n+1或2n-1表示 奇数.

【例1】 有一根团成一团的毛线,拿剪刀任意一刀,假设剪出偶数个断口.问:这根毛线被分成的段数是偶数还是奇数?

分析:奇数.分成的线段数比断口数多1.

【例2】 有一本500页的书,从中任意撕下20张纸,这20张纸上的所有面码之和能否是1999?

分析:不可能.每张纸上的两个页码之和是奇数,20个奇数之和是偶数.

【例3】 数列1,1,2,3,5,8,13,21,34,55??的排列规律:前两个数是1,从第三个数开始,每一个数都是它前两个数的和,这个数列叫做斐波契数列,在斐波契数列前2004个数中共有几个偶数?

分析:根据奇数,偶数交替变化的规律,可以发现有奇奇偶奇奇偶奇奇偶奇奇偶?这样的变化规律,所以2004个数有2004÷3=668个偶数.

【例4】 用数字1,3,0可以组成多少个奇数和偶数?

分析:因为偶数的个位是偶数,所以只有0可作个位数组成偶数;因为奇数的个位是奇数,所以只有1和3可作个位数组成奇数.偶数有:0,10,30,130,310共5个;奇数有:1,3,13,31,103,301共6个.注意0不可以作首位数.

【例5】 任意交换某个三位数的数字顺序得到一个新的三位数,原三位数与新三位数之和能否等于999?

分析:不能.两数和为999,各位数相加时必定没有向上进位,又因为新三位数与原三位数只是三个数字的排列顺序不同,所以把两个三位数的个位、十位、百位数字加在一起一定是偶数,而9+9+9=27是奇数,矛盾.

【例6】 有12张卡片,其中有三张上面写着1,三张写着3,三张写着5,三张写着7.问:能否从中选出五张,使它们上面的数字之和为20?为什么?

分析:不能.5个奇数的和是奇数,不可能等于20.


2014暑期三升四奥数辅导教案(5).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:4、 《乡下孩子》公开课教学设计

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: