《微积分》习题6(2)

2019-01-07 11:28

? (4)?lim1?x2?113x-?0??x

0ln(1?t)dt1?x2?1 ?limx-?0?x

0ln(1?t)d(1?t)1?x2?1?0 ?limx?0??(ln??1)1(5)lim?x?0xx?x01(1?sin2t)tdt

?lim?01(1?sin2t)tx?0dt

1x洛必达法则lim(1?sinx)

x?0?lim(1?2x)x?01?2 2x?e2

lntdt1?t1(6)limx?1(x?1)2?x

lnx?lim1?xx?12x?2

11lnx1x?1?lim?limx?12x2?12x?12x41

1?(7)lim?x?????lim1x2?lim?x2x???ln(edt??e?0?t22x?x0edt)xt22

?ex???xt?ln?0edt?e1x2?x2?e

(8)limx????(arctant)dt

20x1?x2??x0x???x???(limarctan)2dtlim1?x2

?2?x???4lim1?x2?0

(9)?x???lim1x?x0(t?t2)et2?x2dt

?lim?x0(t?t2)etx?ex22x???dt

洛必达法则lim

(x?x2)ex22x???ex(1?2x)2?1 27.设F(x)在[a , b]上连续,且f(x)?0

F(x)??xaf(t)dt??xb1dt f(t)求证:(1)F ' (x)?2;

(2)F ' (x)在[a , b]内有且仅有一个实根.

解:证明: (1)设f(t)dt?g(t) ??1dt?h(t) f(t)F(x)?g(x)?g(a)?h(x)?h(b)?F ' (x)?g ' (x)-g ' (a)?h ' (x)-h ' (b)?f(t)?1f(t)

又因为f(t)?0 , ?F ' (x)?2

(2)因为F(x)在[a , b]上单调增加,又因为F(a)??ab1de??f(t)?ba1de?0 f(t)F(b)??baf(t)dt?0

又因为F(x)在区间[a , b]上连续. 所以在区间[a , b]内紧有一个实根. 8.设

f(x)为连续函数,且存在常数a满足

ex-1?x??axf(t)dt

f(x)及常数a.

解:设f(e)de?g(t)

?则ex?1?x?g(a)?g(x) 对等式两边求导,得:

ex?1?x?g ' (a)?g ' (x)??f(x)

所以所以

f(x)?1?ex?1

?axf(t)dt??axex?1dx?x?ex?1a?a?ea?1?ex?1?x x?1所以a?1 9.设 解:

Q ' (t)?f(t) , P ' (t)?Q(t)x?(x?t)f(t)dt?1?cosx,说明?0x?20f(x)dx?1.

?(x?t)f(t)dt0?tf(t)dt?x[Q(x)?Q(0)]?td(Q(t) ??x[Q(x)?Q(0)]?tdQ(t)?x?x[Q(x)?Q(0)]?tQ(t)?Q(t)dt0??x[Q(x)?Q(0)]?0x0x0x0x??Q(x)dt?1?cosx0x即

P(x)-P(0)?1-cosx?Q(x)?sinx?f(x)?cosx?

?2?f(x)dx?sinx02?10

10.用牛顿-莱布尼茨公式计算下列积分 (1)

?8dx (2)

1x?e?x)dx 13x?(e?12?12arcsinx2dx

21?x(5)

??0cosxdx (6)

?2xdx ?1?(9)

?ex2?lnx2d31xx (10)??tanxdx 62?4??x?1???d1?x?x ??(13)

?21?2?sindx (14)?1?sin2xdx 00?3max{1 , x2}dx

?1

解:(1)?8dx2x?32x381?9132

(2)?1(ex?e?x)dx?(ex?e?x)1?1?1?0 (3)

?e2(lnx)2e2(lnx)2d(lnx)?1e21xdx??(lnx)313122(4)

?12arcsinxdx?21?x2?12arcsinxdarcsinx

2?122arcsin2x21?2?21?2(16?36)

s3)

?e2(lnx)21xdx 7)

?1dx ?14?x2?11)??3tan2xdx 6?15)?xcosx?sinx?2dx4(xsinx)2(4)8)

?2dx04?x212)(16)

(((

((( ?5?2288

xx(5)

?x0cosxdx?2 cosxdx???cosxdx?sinx2?sinxx?2

x0022???(6)

?2?11xdx??20?1?xdx??20xdx?1221205x?x? 202?12(7)?(8)

dx4?x?1?arcsinx1??2?13

??2dx4?x20e?1x2?arctg? 2208(9)

1x2?lnx2dx?x?xdx??1ee121lnx1edx?x2?2x21?e1lnxdlnx

?e1121(e?1)?2(lnx)2?(e2?3)

1222??tanxdx??lncosx3(10)

??3??61ln3 26?(11)

???3tanxdx??3626?1cosx2??ldx??3(sec2x?1)dx

6??2ln2?1

?(3??3)?(3??) 36?442?3?36

1dx x(12)

?1(x?1x)2dx??1x?2x?1dx?x?411?2x?4?(x?44?lnx

1?2ln2?1

(13)

??20?111?sinxdx?6(?sinx)dx??2(sinx?)dx 2202???6


《微积分》习题6(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:第二实验小学绿之韵广播站程序

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: