?1x?32?1x2?2x?5dx??2a?0a2?4da?1d(a2?4)0a2?4??222?20a2?4da?122ln2??20a2?4da
?12ln2?arctana220?12ln2?(?4?0)?12ln2?14?14.用分部积分法计算下列各定积分 (1)?10x2e?xdx (2)
?1(x?x)e?xdx ?1(4)
?e(lnx)3dx (5)elnxdx 1?1e(7)
?10xarctanxdx (8)
?e2lnx(x?1)x e2d(10)?ln2?x2dxsinxdx 0x3ex (11)
?2?0(13)?12x1?x2arcsinxdx (14)
?e2lnx0e?1xdx
解:(1)??1x2de?x
0??(x2e?x11?x0?0e2xdx
??(e?1??12xdx?x)0
??(e?1?2e?1?2e?x10) ??(3e?1?2e?1?2) ?2?5e?1 (2)??0()?1x?xexdx??1(x?x)e?x0dx
??12xde?x
03)
?e?1xln(1?x)dx
0?6)
?2xsinxdx
09)
?1e2x(4x?3)dx
0?12)
?e2sin(lnx)xdx12((((
??(2xe?x?10?e01?x2dx
??(2e?1?2e?x) ??(2e?1?2e?1?2) ?2?4e?1 (3)=
1210?e?10ln(x?1)dx2
?(x2ln(x?1)(4)?x(lnx)3? ?e?e12e?1?0?e?10x21dx x?1e1?e11x3lnxdx
x?3lnxdx
1 ?e?3(xlnx?e1?e11xdx x ?e?3[e?(e?1)] ?e?3
1(5)??(xlnx1?e?1e11ee1x dx)?xlnx?1x?e11xdx x ??[??(1?)]?e?(e?1) ?1?1 ?2 (6)???201e?xdcosx
??(xcosx?20???20cosxdx)
?sinx? x0 ?1
1(7)?2?10arctanxdx2
111?(x2arctanx?0211??[?(x?024?0x211?x2dx)]
dx)
?11?x211??[?1?arctanx ]
024??4?12e2
1(x?1)(8)???elnxd
??[lnx1e2x?1e2?ln]
(x?1)exee1?e?ln(1?e)?
2x(9)?12?(4x?3)de01
?[(4x?3)e3x?12121210?e012x?4dx]
?(7e2?3?4e2x) ?[7e2?3?2(e2?1)] ?(5e2?1) (10)??11212102?ln20x2de?x2
??[x2?e?x122ln20??ln202xe?xdx]
2 ?1[ln2e?ln2?2?ln202de?x]
2 ??[ln2?e?x1122ln20]
??[ln2?e?ln2?1] ??[ln2?] ??(ln2?1) (11)?141122112212?xsinxdx???0?2?xsinxdx
??(xcosx?0???0cosxdx)?(xcosx2?????2?cosxdx)
?4? (12)
??e2sinlnxx2?1dx????20sinlnxd1x1???sinlnxe2?x11??sinlnxe2?x1????12111?coslnx?dxxx1x???2coslnx?d?
11sinlnx?dxxx11??sinlnxe2?coslnxe2?xx11?111??(sinlnx?coslnx)e22xx1?11(1??)2e2??21?2x011?x2arcsinxdx3?(13)
?102?(?1)??arcsinx?d(1?x2)233?12???(1?x2)2?arcsinx?03???103(1?x2)21?(1?x2)?2??dx???
??23?10(1?x2)dx?49(14)
?e2lnxxdxe?1
?2?e2e?1lnx1?dx2?2?lnx1?x2e2e?0e0e?112?2?e2e?01?x21x2121?dxx1??2lnx x2e2?2?e0e?11?dxx?2
x?12dx?4e?2e01??8?6e2?x??dx??2e??e0e?1
15.利用函数奇偶性计算下列积分 (1)
解:(1)设f(x)?sin2xln(x?1?x2) 则f(?x)?sin2xln(?x?1?x2)
f(?x)?f(x)?sin2x[ln(?x?1?x2)?ln(x?x?2)] ?sin2xln(1?x2?x2)?0
??3?22 (2)?sinxln(x?1?x)dx3?112?x2?1(11?)dxcosxarccosxdx (3)
?11?ex21? 所以 因为
f(x)为奇函数
f(x))在(-3,3)上连续且为奇函数,所以原式等于
0;
(2)设f(x)?12?x2(1?) 1?ex21(11?) 21 ?f(?x)??x2?x21?e ?f(x)?f(?x)?所以
12?x2(11?e?x?11?ex?1)?0
f(x)为奇函数且f(x)在(-1,1)上连续。
所以原式等于0; (3)设因为
??4?5(?5)dx???3?4(?4)dx???4dx
45f(?x)?cosxarccosx?f(x)