?1???n?1?Panlg?1????lg?1?Pa?lg?1?Pa?n?lg?1???
3.4 根据以往的经验,用一般的方法治疗某疾病,其死亡率为40%,治愈率为60%。今用一种新药治疗染上该病的5名患者,这5人均治愈了,问该项新药是否显著地优于一般疗法?(提示:计算一般疗法5人均治愈的概率,习惯上当P(5人均治愈)> 0.05时,则认为差异不显著;当P(5人均治愈)< 0.05时,则认为差异显著)。
答:设P(治愈)=φ= 0.60,则5人均治愈的概率为: P = p5 = (0.60)5 = 0.077 76
P>0.05
所以该药物并不优于一般疗法。
3.5 给一组雌雄等量的实验动物服用一种药物,然后对存活的动物分成5只为一组,进行抽样试验。试验结果表明,5只均为雄性的频率为1 / 243,问该药物对雌雄的致死作用是否一致?
答:设p为处理后雄性动物存活的概率,则
因此,对雄性动物的致死率高于对雌性动物的致死率。
3.6 把成年椿象放在?8.5℃下冷冻15分钟,然后在100个各含10只椿象的样本中计算死虫数,得到以下结果:
0 1 2 3 4 死虫数
4 21 28 22 14 样本数
计算理论频数,并与实际频数做一比较。
答:先计算死虫数C:
C = 0×4+1×21+2×28+3×22+4×14+5×8+6×2+7×1 = 258 死虫率 φ= 258 / 1 000 = 0.258 活虫率 1 –φ= 0.742
展开二项式(0.742 + 0.258)10 得到以下结果:
0.050 59+0.175 90+0.275 22+0.255 19+0.155 28+0.064 79+0.018 774 +3.730 2×10-3+4.863 8×10-4+3.758 2×10-5+1.307×10-6 将以上各频率乘以100得到理论频数,并将实际数与理论数列成下表。
死虫数
0 1 2 3 4 5 6 7
实际数
4 21 28 22 14 8 2 1
理论数
5.1 17.2 27.5 25.5 15.5 6.5 1.9 0.4
偏差
-1.1 3.8 0.5 -3.5 -1.5 1.5 0.1 0.6
5
8
6 2
7 1
8 0
9 0
10 0
合计 100
p5?11?52433p?13
8 9 10
0 0 0 0
0 0 0
0 0 3.7 人类染色体一半来自父亲,一半来自母亲。在减数分裂时,46条染色体随机分配到两极,若不考虑染色体内重组,父亲的22条常染色体重新聚集在一极的概率是多少?12条父亲染色体和11条母亲染色体被分配到同一极的概率又是多少?常染色体的组合共有多少种?从上述的计算可以看出变异的广泛性,若再考虑染色体内重组,新组合染色体的数目就更惊人了。
22?1??7???2.38?10答:(1)P(父亲22条常染色体重新聚集于同一极) = ?2?
(2)P(12条父亲染色体和11条母亲染色体被分配到同一极)
23!?1??1?1352078??0.1612????!12!?2??2?8388608 = 11
(3)共有222 = 4 194 304种。
3.8 生男生女的概率各为1/2,问在一个医院中,连续出生30名男孩及30名性别交错的新生儿的概率各为多少?
3011121?1??9.3132?10?10???1073741824答:P(连续出生30名男孩)=?2? 1?1?2????1.8626?10?9536870912 P(30名性别交错不同者)=?2?
3.9 在显性基因频率很低时,出现显性性状的个体一般为杂合子。一名女子是蓬发者(显性性状),在她的全部六名孩子中,(1)其中第一名孩子,(2)其中第一和第二名孩子,(3)全部六名孩子,(4)任何一名曾孙(或曾孙女)中,发生蓬发的概率是多少?
答: 设:P(子女蓬发)= φ= 1/2 P(子女非蓬发)= 1 – φ= 1/2
则(1)P(其中第一名子女蓬发)=(1/2)(1/2)5 = 0.015 625 (2)P(只有第一和第二名孩子蓬发)= (1/2)2(1/2)4 = 0.015 625 (3)P(全部六名子女)= (1/2)6 = 0.015 625
(4)P(任何一名曾孙蓬发)= P(任何一名儿子蓬发)P(任何一名孙子蓬发|蓬发的儿子)P(任何一名曾孙蓬发|蓬发的孙子)
=(1/2×1/2) (1/2×1/2) (1/2×1/2) = 0.015 625
3.10 在数量性状遗传中,F1的性状介于双亲之间,F2的性状向双亲方向分离。这是一个二项分布问题,根据二项展开式,计算控制某性状的基因个数,假设出现亲本性状的频率为a。
答:设:P(正效应基因频率)= p
30pn?anlgp?lgalgan?lgp 则
3.11 计算μ = 0.1,0.2,1,2,5时,泊松分布的γ1和γ2,绘制概率分布
图并做比较。
答:泊松分布的概率函数:
p?y???yy!E?
(1)μ =0.1时
y p(y) 0 0.904 8 1 0.090 48 2 0.004 524 3 0.000 150 8 4 0.000 003 77 11?1???3.1623?0.1将μ = 0.1,0.2,1,2,5分别代入上式。
?2?1??1?100.1
(2)μ =0.2时
y p(y) 0 0.818 7 1 0.163 7 2 0.016 39 3 0.001 092 4 0.000 054 58 11?1???2.2361?0.2?(3)μ = 1时
y 0 1 2 3 4 5 6 7
?1??2?1?2?1?1?50.2
p(y) 0.367 9 0.367 9 0.183 9 0.061 31 0.015 33 0.003 066 0.000 510 9 0.000 072 99
?1?11??111
(4)μ = 2时
y
0 1
1??1?1
p(y) 0.135 3 0.270 7
y 6 7
p(y)
0.012 03 0.003 437
2 3 4 5
0.270 7 0.180 4 0.090 22 0.036 09
8 9 10
11 0.000 859 3 0.000 190 9 0.000 038 19
1?1????0.7071
?21.4142
11?2???0.5 ?2
(5)μ = 5时
y
0 1 2 3 4 5 6 7 8
p(y) 0.006 738 0.033 69 0.084 22 0.140 4 0.175 5 0.175 5 0.146 2 0.104 4 0.065 28
y 9 10 11 12 13 14 15 16
p(y) 0.036 27 0.018 13 0.008 424 0.003 434 0.001 321 0.000 471 7 0.000 157 2 0.000 049 14
?1??2?1?1?11??0.442752.2361??1?0.25
可见,随着μ的增大泊松分布越来越
接近于“正态”的。
3.12 随机变量Y服从正态分布N(5,42),求P(Y≤0),P(Y≤10),P(0≤Y≤15),P(Y≥5),P(Y≥15)的值。
答:
?10?5?P?Y?10????????1.25??0.894354???0?5?P?Y?0?????????1.25??0.105654???15?5??0?5?P?0?Y?15????????????2.5?????1.25??0.99379?0.10565?0.88814?4??4??5?5?P?Y?5??1?????1???0??1?0.5?0.54???15?5?P?Y?15??????????2.5??0.006214??
或者使用SAS程序计算,结果见下表:
OBS MU SIGMA Y1 LOWERP Y2 UPPERP MIDP
1 5 4 10 0.89435 . . . 2 5 4 0 0.10565 . . .
3 5 4 0 0.10565 15 0.00621 0.88814 4 5 4 . . 5 0.50000 . 5 5 4 . . 15 0.00621 .
3.13 已知随机变量Y服从正态分布N(0,52),求y0 分别使得P(Y≤y0)=0.025, P(Y≤y0)=0.01, P(Y≤y0)=0.95及 P(Y≥y0)=0.90。
答:
y?0?y?0?P?Y?y0??0.025??0??1.96y0??9.8??0.025055??y0?0?y?0?P?Y?y0??0.01??0??2.326y0??11.63??0.0155??y0?0?y0?0??1.645y0?8.225??0.9555??y0?0?y?0?P?Y?y0??0.901???0??1.283y0??6.415??0.9055?? P?Y?y0??0.95??
3.14 细菌突变率是指单位时间(细菌分裂次数)内,突变事件出现的频率。然而根据以上定义直接计算突变率是很困难的。例如,向一试管中接种一定量的细菌,振荡培养后铺平板。在平板上发现8个突变菌落。这8个突变细菌究竟是8个独立的突变事件呢,还是一个突变细胞的8个子细胞是很难确定的。但是有一点是可以肯定的,即,没有发现突变细胞的平皿一定没有突变事件出现。
向20支试管中分别接种2×107 个大肠杆菌,振荡培养后铺平板,同时接种T1噬菌体。结果在9个平皿中出现数量不等的抗T1噬菌体菌落。11个平皿上没有出现。已知平皿上突变菌落数服从泊松分布并且细胞分裂次数近似等于铺平板时的细胞数。利用泊松分布概率函数计算抗T1突变率。
答:已知接种细胞数为n,n即可认为是细胞分裂次数。若每一次细胞分裂的突变率为u,那么每一试管中平均有un次突变事件发生(μ)。从泊松分布概率函数可知,无突变发生的概率f(0)=E-un。实验结果无突变的平皿数为11个,即f(0)=11/20=0.55。解下式 ?0.55 即可求出突变率u。已知n=0.2×108,代入上式得到u=3×10-8。
E?un
3.15 一种新的血栓溶解药t-pA,据说它能消除心脏病发作。在一次检测中的7名检测对象,年龄都在50岁以上,并有心脏病发作史。他们以这种新药治疗后,6人的血栓得到溶解,1人血栓没有溶解。
假设t-pA溶解血栓是无效的,并假设,不用药物在短时间内心脏患者血栓自己溶解的概率φ是很小的,如φ=0.1。设y为7名心脏患者中血栓在短时间内可以自动溶解的患者数。问:(1)若药物是无效的,7名心脏患者中的6名血栓自动溶解的概率是多少? (2)Y≥6是否为一稀有事件,你认为药物是否有效? 答:(1) ф= 0.1 1-ф=0.9 n=7 y=6,