高等数学复习题(含答案)(4)

2019-03-10 20:34

sin2tcost原式=?dt=?sin2tdt=?1?cos2tdt x

cost21

11dt?cos2td(2t) ??241111 =t?sin2t?C?t?sintcost?C

24221x =arcsinx?1?x2?C.

22 =

5.计算下列积分:

(1)ln2xdx, (2)

(4)

t 1?x2

??arctan2xdx, (3) ?xe4xdx,

?e5xsin4xdx, (5)

?xsin100xdx, (6) ?xarctan2xdx.

解:(1)?ln2xdx?xln2x??xd(ln2x)

2dx 2x =xln2x?x?C.

=xln2x??x?(2)arctan2xdx=xarctan2x??xd(arctan2x) =xarctan2x??x??2dx

1?(2x)2d(x2) =xarctan2x?? 21?4x11d(1?4x2) 2?41?4x12 =xarctan2x?ln(1?4x)?C.

4114x14x4x4x(3)?xedx??xde?xe??edx

44414x14x=xe?e?C. 416 =xarctan2x?e5x15xe5x)?esin4x??d(sin4x) (4)?esin4xdx??sin4xd(5555x =e155x4sin4x??e5xcos4xdx

515x4e5x =esin4x??cos4xd

555?15x4?e5xe5xcos4x??d(cos4x)? =esin4x??55?55?第16页

=e5xsin4x?移项合并,得?e5xsin4xdx?1545x16ecos4x??e5xsin4xdx, 252515xe(5sin4x?4cos4x)?C. 41cos100xxcos100xcos100x(5)?xsin100xdx??xd(?)????(?)dx

100100100sin100xxcos100x =??C.

10000100x2(6)?xarctan2xdx=?arctan2xd()

2x2x2 =arctan2x??d(arctan2x)

22x2x22arctan2x???dx =2221?(2x)x211 =arctan2x??(1?)dx 2241?4xx2x1 =arctan2x??arctan2x?C.

2486.计算 (1)

?(x23xxd. ?1)edx , (2) ?secx 解:(1) 选 u?x?1,dv?edx, v?e, du?2xdx, 于是

2xx 原式 ?(x?1)e?2xedx,

2xx?对于

xxe?dx再使用分部积分法,

选u?x, dv?edx , 则 du?dx,v?e,从而

xxxxxx?edx=eeedxxx??=?e?C.

xxxx2xx?2(xe?e?C)?(x?2x?1)ee?C(C?2C1), 1原式=

为了简便起见,所设 u?x,v?e 等过程不必写出来,其解题步骤如下:

x?xexdx=?xdex=xex??exdx?xex?ex?C.

3sec?xdx=?secxd(tanx)=secxtanx??tanxd(secx)

(2)

=secxtanx?tanxsecxdx =secxtanx?(secx?1)secxdx

第17页

?2?2 =secxtanx?secxdx+secxdx =secxtanx?secxdx+lnsecx?tanx, 式中出现了“循环”,即再出现了secxdx移至左端,整理得

3?secxdx=

??3?3?31[secxtanx+lnsecx?tanx]+C. 27. 利用定积分的估值公式,估计定积分

43?1?1(4x4?2x3?5)dx的值.

解:先求f(x)?4x?2x?5在??1,1?上的最值,由

f?(x)?16x?6x?0, 得x?0或x?比较 f(?1)?11,f(0)?5,f()??323. 83827,f(1)?7的大小,知 1024fmin??27,fmax?11, 1024由定积分的估值公式,得fmin?[1?(?1)]??1?1(4x4?2x3?5)dx?fmax??1?(?1)?,

127即 ???(4x4?2x3?5)dx?22.

?15128. 求函数f(x)?1?x2在闭[-1,1]上的平均值.

111π?12π21?xdx???. 解:平均值??1?(?1)??12249. 若f(x)??x2xsint2dt,则f?(x)=?

222242解:f?(x)=(x)?sin(x)?sinx?2xsinx?sinx.

10.已知 F(x)??sinxx21?tdt , 求 F?(x).

22解:F?(x)=?1?x(2x)+1?sinx?cosx=?2x1?x?1?sinx?cosx.

?11. 求极限limx?1x1sinπtdt.

1?cosπx0解:此极限是“”型未定型,由洛必达法则,得

0? limx?1x1sinπtdt=limx?1(?sinπtdt)?1x1?cosπx(1?cosπx)?=limsinπx11?lim()??

x?1?πsinπxx?1?ππ12.计算下列定积分

第18页

(1)解:(1)

?020|1?x|dx, (2)

10?1?2x|x|dx, (3)

212?2π0|sinx|dx.

?2|1?x|dx=?(1?x)dx+?(x?1)dx

1(1?x)2 =?2(2)

0(x?1)211?=?=1.

2221102?1?2x2|x|dx=?(?x3)dx+?x3dx

?200x4 =?4(3)

?2x4117?=4+?. 40442ππ1?2π0|sinx|dx=?sinxdx+?(?sinx)dx

0π2πππ =(?cosx)0?cosx13.计算下列定积分

(1)

=2+2=4.

?π2π?2cosx?cosxdx,(2)?π2031?11?x2dx.

12解:(1)

?π2π?2cosx?cos3xdx?2?(cosx)sinxdx

π20=?2?44(cosx)d(cosx)??cosx?.

3302π2π?21232π2(2)

?1?11?xdx??π202π2π?21?(sint)d(sint)??(cost)2dt

π20 =2

?(cost)2dt?2?π1?cos2t1dt?(t?sin2t)?.

2220π40π214.计算 (1)

?1?041?xxdx , (2)?sec4xtanxdx .

解:(1)利用换元积分法,注意在换元时必须同时换限.

令 t?x ,x?t2 ,dx?2tdt ,

当x?0时,t?0,当x?4时,t?2,于是

21?t4dx==2tdt[4?2t?]dt ?01?x?01?t?01?t41?x2?4t?t2?4ln1?t?2?0?4?4ln3.

第19页

(2)

?π40secxtanxdx=?sec3xd(secx)

4π401?sec4x415. 计算下列定积分:

(1)(3)

4010π40?1?13?.442e

??(5x?1)e5xdx, (2)?ln(2x?1)dx,

1eπxcosπxdx, (4)?(x3?3x?e3x)xdx.

04115x1ee5xe5x5x(5x?1)??d(5x?1) 解:(1)?(5x?1)edx=?(5x?1)d=

00055504=

6e?1e?5555x1?e5.

0(2)

?2e12eln(2x?1)dx=xln?2x?1?1??xd(ln?2x?1?)

12e2e2x?12x?1dx 2e1 ?2eln(4e?1)?ln3??(1?)dx

12x?112e ?2eln(4e?1)?ln3?(x?ln?2x?1?)1

213 ?(2e?)ln?4e?1??ln3?2e?1.

2211πxsinπxπx(3) ?ecosπxdx=?ed

00π1sinπx1πx1 ?esinπx0??de?x

0ππ11cosπxπx =0??eπxsinπxdx=??ed(?)

00π1cosπx1πx1?ecosπx0??de?x

0ππ11π=?(e?1)??eπxcosπxdx

0π11π移项合并得?eπxcosπxdx??(e?1).

02π ?2eln(4e?1)?ln3?x43x13x??e) (4)?(x?3?e)xdx??xd(004ln3313x3x141xx313x3x13x?x(??e)??(??e)dx

04ln334ln3304x1第20页


高等数学复习题(含答案)(4).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:茶艺馆开业前期预期流程与规划

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: