sin2tcost原式=?dt=?sin2tdt=?1?cos2tdt x
cost21
11dt?cos2td(2t) ??241111 =t?sin2t?C?t?sintcost?C
24221x =arcsinx?1?x2?C.
22 =
5.计算下列积分:
(1)ln2xdx, (2)
(4)
t 1?x2
??arctan2xdx, (3) ?xe4xdx,
?e5xsin4xdx, (5)
?xsin100xdx, (6) ?xarctan2xdx.
解:(1)?ln2xdx?xln2x??xd(ln2x)
2dx 2x =xln2x?x?C.
=xln2x??x?(2)arctan2xdx=xarctan2x??xd(arctan2x) =xarctan2x??x??2dx
1?(2x)2d(x2) =xarctan2x?? 21?4x11d(1?4x2) 2?41?4x12 =xarctan2x?ln(1?4x)?C.
4114x14x4x4x(3)?xedx??xde?xe??edx
44414x14x=xe?e?C. 416 =xarctan2x?e5x15xe5x)?esin4x??d(sin4x) (4)?esin4xdx??sin4xd(5555x =e155x4sin4x??e5xcos4xdx
515x4e5x =esin4x??cos4xd
555?15x4?e5xe5xcos4x??d(cos4x)? =esin4x??55?55?第16页
=e5xsin4x?移项合并,得?e5xsin4xdx?1545x16ecos4x??e5xsin4xdx, 252515xe(5sin4x?4cos4x)?C. 41cos100xxcos100xcos100x(5)?xsin100xdx??xd(?)????(?)dx
100100100sin100xxcos100x =??C.
10000100x2(6)?xarctan2xdx=?arctan2xd()
2x2x2 =arctan2x??d(arctan2x)
22x2x22arctan2x???dx =2221?(2x)x211 =arctan2x??(1?)dx 2241?4xx2x1 =arctan2x??arctan2x?C.
2486.计算 (1)
?(x23xxd. ?1)edx , (2) ?secx 解:(1) 选 u?x?1,dv?edx, v?e, du?2xdx, 于是
2xx 原式 ?(x?1)e?2xedx,
2xx?对于
xxe?dx再使用分部积分法,
选u?x, dv?edx , 则 du?dx,v?e,从而
xxxxxx?edx=eeedxxx??=?e?C.
xxxx2xx?2(xe?e?C)?(x?2x?1)ee?C(C?2C1), 1原式=
为了简便起见,所设 u?x,v?e 等过程不必写出来,其解题步骤如下:
x?xexdx=?xdex=xex??exdx?xex?ex?C.
3sec?xdx=?secxd(tanx)=secxtanx??tanxd(secx)
(2)
=secxtanx?tanxsecxdx =secxtanx?(secx?1)secxdx
第17页
?2?2 =secxtanx?secxdx+secxdx =secxtanx?secxdx+lnsecx?tanx, 式中出现了“循环”,即再出现了secxdx移至左端,整理得
3?secxdx=
??3?3?31[secxtanx+lnsecx?tanx]+C. 27. 利用定积分的估值公式,估计定积分
43?1?1(4x4?2x3?5)dx的值.
解:先求f(x)?4x?2x?5在??1,1?上的最值,由
f?(x)?16x?6x?0, 得x?0或x?比较 f(?1)?11,f(0)?5,f()??323. 83827,f(1)?7的大小,知 1024fmin??27,fmax?11, 1024由定积分的估值公式,得fmin?[1?(?1)]??1?1(4x4?2x3?5)dx?fmax??1?(?1)?,
127即 ???(4x4?2x3?5)dx?22.
?15128. 求函数f(x)?1?x2在闭[-1,1]上的平均值.
111π?12π21?xdx???. 解:平均值??1?(?1)??12249. 若f(x)??x2xsint2dt,则f?(x)=?
222242解:f?(x)=(x)?sin(x)?sinx?2xsinx?sinx.
10.已知 F(x)??sinxx21?tdt , 求 F?(x).
22解:F?(x)=?1?x(2x)+1?sinx?cosx=?2x1?x?1?sinx?cosx.
?11. 求极限limx?1x1sinπtdt.
1?cosπx0解:此极限是“”型未定型,由洛必达法则,得
0? limx?1x1sinπtdt=limx?1(?sinπtdt)?1x1?cosπx(1?cosπx)?=limsinπx11?lim()??
x?1?πsinπxx?1?ππ12.计算下列定积分
第18页
(1)解:(1)
?020|1?x|dx, (2)
10?1?2x|x|dx, (3)
212?2π0|sinx|dx.
?2|1?x|dx=?(1?x)dx+?(x?1)dx
1(1?x)2 =?2(2)
0(x?1)211?=?=1.
2221102?1?2x2|x|dx=?(?x3)dx+?x3dx
?200x4 =?4(3)
?2x4117?=4+?. 40442ππ1?2π0|sinx|dx=?sinxdx+?(?sinx)dx
0π2πππ =(?cosx)0?cosx13.计算下列定积分
(1)
=2+2=4.
?π2π?2cosx?cosxdx,(2)?π2031?11?x2dx.
12解:(1)
?π2π?2cosx?cos3xdx?2?(cosx)sinxdx
π20=?2?44(cosx)d(cosx)??cosx?.
3302π2π?21232π2(2)
?1?11?xdx??π202π2π?21?(sint)d(sint)??(cost)2dt
π20 =2
?(cost)2dt?2?π1?cos2t1dt?(t?sin2t)?.
2220π40π214.计算 (1)
?1?041?xxdx , (2)?sec4xtanxdx .
解:(1)利用换元积分法,注意在换元时必须同时换限.
令 t?x ,x?t2 ,dx?2tdt ,
当x?0时,t?0,当x?4时,t?2,于是
21?t4dx==2tdt[4?2t?]dt ?01?x?01?t?01?t41?x2?4t?t2?4ln1?t?2?0?4?4ln3.
第19页
(2)
?π40secxtanxdx=?sec3xd(secx)
4π401?sec4x415. 计算下列定积分:
(1)(3)
4010π40?1?13?.442e
??(5x?1)e5xdx, (2)?ln(2x?1)dx,
1eπxcosπxdx, (4)?(x3?3x?e3x)xdx.
04115x1ee5xe5x5x(5x?1)??d(5x?1) 解:(1)?(5x?1)edx=?(5x?1)d=
00055504=
6e?1e?5555x1?e5.
0(2)
?2e12eln(2x?1)dx=xln?2x?1?1??xd(ln?2x?1?)
12e2e2x?12x?1dx 2e1 ?2eln(4e?1)?ln3??(1?)dx
12x?112e ?2eln(4e?1)?ln3?(x?ln?2x?1?)1
213 ?(2e?)ln?4e?1??ln3?2e?1.
2211πxsinπxπx(3) ?ecosπxdx=?ed
00π1sinπx1πx1 ?esinπx0??de?x
0ππ11cosπxπx =0??eπxsinπxdx=??ed(?)
00π1cosπx1πx1?ecosπx0??de?x
0ππ11π=?(e?1)??eπxcosπxdx
0π11π移项合并得?eπxcosπxdx??(e?1).
02π ?2eln(4e?1)?ln3?x43x13x??e) (4)?(x?3?e)xdx??xd(004ln3313x3x141xx313x3x13x?x(??e)??(??e)dx
04ln334ln3304x1第20页