题 2-15 图
分析 该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F 和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.
解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为
v0?2gh
运动员入水后,由牛顿定律得
P -Ff -F =ma
由题意P =F、Ff=bv ,而a =dv /dt =v (d v /dy),代 入上式后得
-bv2= mv (d v /dy)
考虑到初始条件y0 =0 时, v0?t2
2gh,对上式积分,有
?m???dy??0?b???vdvvv0
v?v0e?by/m?2ghe?by/m
(2) 将已知条件b/m =0.4 m-1 ,v =0.1v0 代入上式,则得
y??mblnvv0?5.76m
3 -8 Fx =30+4t(式中Fx 的单位为N,t 的单位为s)的合外力作用在质量m=10 kg 的物体上,试求:(1) 在开始2s 内此力的冲量;(2) 若冲量I =300 N·s,此力作用的时间;(3) 若物体的初速度v1 =10 m·s-1 ,方向与Fx相同,在t=6.86 s时,此物体的速度v2 .
分析 本题可由冲量的定义式I?速度v2.
解 (1) 由分析知
2??30?4tdt?30t?2t?02t2?t1Fdt,求变力的冲量,继而根据动量定理求物体的
I?20?68N?s
(2) 由I =300 =30t +2t2 ,解此方程可得
t =6.86 s(另一解不合题意已舍去)
(3) 由动量定理,有
I =m v2- m v1
由(2)可知t =6.86 s 时I =300 N·s ,将I、m 及v1代入可得
v2?I?mv1m?40m?s?1
3 -9 高空作业时系安全带是非常必要的.假如一质量为51.0 kg 的人,在操作时不慎从高空竖直跌落下来,由于安全带的保护,最终使他被悬挂起来.已知此时人离原处的距离为2.0 m ,安全带弹性缓冲作用时间为0.50 s .求安全带对人的平均冲力.
分析 从人受力的情况来看,可分两个阶段:在开始下落的过程中,只受重力作用,人体可看成是作自由落体运动;在安全带保护的缓冲过程中,则人体同时受重力和安全带冲力的作用,其合力是一变力,且作用时间很短.为求安全带的冲力,可以从缓冲时间内,人体运动状态(动量)的改变来分析,即运用动量定理来讨论.事实上,动量定理也可应用于整个过程.但是,这时必须分清重力和安全带冲力作用的时间是不同的;而在过程的初态和末态,人体的速度均为零.这样,运用动量定理仍可得到相同的结果.
解1 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为
v1?2gh (1)
在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有
?F由式(1)、(2)可得安全带对人的平均冲力大小为
F?mg?Δ?mv?Δt?mg??P?Δt?mv2?mv1 (2)
Δ2ghΔt?1.14?103N
解2 从整个过程来讨论.根据动量定理有
F?mgΔt2h/g?mg?1.14?10N
?133 -11 一只质量m1?0.11kg的垒球以v1?17m?s棒击出后,具有如图(a)所示的速度且大小v2?34m?s水平速率扔向打击手,球经球,若球与棒的接触时间为0.025
?1s,求:(1)棒对该球平均作用力的大小;(2)垒球手至少对球作了多少功?
分析 第(1)问可对垒球运用动量定理,既可根据动量定理的矢量式,用几何法求解,如图(b)所示;也可建立如图(a)所示的坐标系,用动量定量的分量式求解,对打击、碰撞一类作用时间很短的过程来说,物体的重力一般可略去不计.
题 3-11 图
解 (1) 解 1 由分析知,有
F?t?mv2?mv1
其矢量关系如图(b)所示,则
(F?t)?(mv1)?(mv2)?2(mv1)(mv2)cos(180?60)
解之得 F?197.9N
解 2 由图(a)有
222??Fx?t?mv2x?mv1x
2yFy?t?mv?0
将v1x?v,v2x??v2cos60?及v2y?v2sin60?代入解得Fx和Fy,则
F?(2) 由质点动能定理,得
Fx?F22y?197.9N
W?12mv22?12mv1?47.7J
23 -21 用铁锤把钉子敲入墙面木板.设木板对钉子的阻力与钉子进入木板的深度成正比.若第一次敲击,能把钉子钉入木板1.00 ×10 -2 m.第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?
分析 由于两次锤击的条件相同,锤击后钉子获得的速度也相同,所具有的初动能也相同.钉子钉入木板是将钉子的动能用于克服阻力作功,由功能原理可知钉子两次所作的功相等.由于阻力与进入木板的深度成正比,按变力的功的定义得两次功的表达式,并由功相等的关系即可求解.
解 因阻力与深度成正比,则有F=kx(k 为阻力系数).现令x0=1.00 ×10 -2 m,第二次钉入的深度为Δx,由于钉子两次所作功相等,可得
x0x0?Δx?0kxdx??x0kxdx
Δx=0.41 ×10 m
3 -22 一质量为m 的地球卫星,沿半径为3RE 的圆轨道运动, RE为地球的半径.已知地
-2
球的质量为mE.求:(1) 卫星的动能;(2) 卫星的引力势能;(3) 卫星的机械能.
分析 根据势能和动能的定义,只需知道卫星的所在位置和绕地球运动的速率,其势能和动能即可算出.由于卫星在地球引力作用下作圆周运动,由此可算得卫星绕地球运动的速率和动能.由于卫星的引力势能是属于系统(卫星和地球)的,要确定特定位置的势能时,必须规定势能的零点,通常取卫星与地球相距无限远时的势能为零.这样,卫星在特定位置的势能也就能确定了.至于卫星的机械能则是动能和势能的总和.
解 (1) 卫星与地球之间的万有引力提供卫星作圆周运动的向心力,由牛顿定律可得
GmEm?mv2?3RE?223RE
则 Ek?12mv?GmEm6RE
(2) 取卫星与地球相距无限远(r→∞)时的势能为零,则处在轨道上的卫星所具有的势能为
EP??GmEm3RE
(3) 卫星的机械能为
E?Ek?EP?GmEm6RE?GmEm3RE??GmEm6RE
3 -29 如图所示,一质量为m′的物块放置在斜面的最底端A 处,斜面的倾角为α,高度为h,物块与斜面的动摩擦因数为μ,今有一质量为m 的子弹以速度v0 沿水平方向射入物块并留在其中,且使物块沿斜面向上滑动.求物块滑出顶端时的速度大小.
题 3-29 图
分析 该题可分两个阶段来讨论,首先是子弹和物块的撞击过程,然后是物块(包含子弹)沿斜面向上的滑动过程.在撞击过程中,对物块和子弹组成的系统而言,由于撞击前后的总动量明显是不同的,因此,撞击过程中动量
不守恒.应该注意,不是任何碰撞过程中动量都是守恒的.但是,若取沿斜面的方向,因撞击力(属于内力)远大于子弹的重力P1 和物块的重力P2 在斜面的方向上的分力以及物块所受的摩擦力Ff ,在该方向上动量守恒,由此可得到物块被撞击后的速度.在物块沿斜面上滑的过程中,为解题方便,可重新选择系统(即取子弹、物块和地球为系统),此系统不受外力作用,而非保守内力中仅摩擦力作功,根据系统的功能原理,可解得最终的结果.
解 在子弹与物块的撞击过程中,在沿斜面的方向上,根据动量守恒有
mv0cosα??m?m??v1 (1)
在物块上滑的过程中,若令物块刚滑出斜面顶端时的速度为v2 ,并取A 点的重力势能为零.由系统的功能原理可得
?μ?m?m??gcosα12hsinα
12??m?m??v22??m?m??gh??m?m??v12 (2)
由式(1)、(2)可得
v2??m?v0cosα??2gh?μcotα?1? ??m?m??24 -11 质量为m1 和m2 的两物体A、B 分别悬挂在图(a)所示的组合轮两端.设两轮的半径分别为R 和r,两轮的转动惯量分别为J1 和J2 ,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计.试求两物体的加速度和绳的张力.
题 4-11 图
分析 由于组合轮是一整体,它的转动惯量是两轮转动惯量之和,它所受的力矩是两绳索张力矩的矢量和(注意两力矩的方向不同).对平动的物体和转动的组合轮分别列出动力学方程,结合角加速度和线加速度之间的关系即可解得.
解 分别对两物体及组合轮作受力分析,如图(b).根据质点的牛顿定律和刚体的转动定律,有
P1?FT?1?m1g?FT1?m1a1 (1) FT?2?P2?FT2?m2g?m2a2 (2)
FT1R?FT2r??J1?J2?α (3) FT?1?FT1,FT?2?FT2 (4)
由角加速度和线加速度之间的关系,有