第十章 无穷级数习题详解
(sin2n)2较判别法,故级数 ?也收敛. n6n?1???sinnn22 (5)由于 lim?lim????,
n??n??1?2n2nsin?1?而?n收敛,故?sinn也收敛.
2n?12n?1?2. 用比值判别法判别下列级数的敛散性: (1)1?(2)3?(3)sin?45n?2??????; 23n33332?2!22?33?3!313???3n?n!n1n??;
11?2?sin2?3?sin3???nsinn??; 2222?lnn(n!)2(4)?; (5);
n(3n)!n2n?1n?1??nnn2(6)?; (7)?n.
n!n?1n?13?un?1n?2n?33n1n?31解(1)un?,lim?lim??lim???1,
n??un??3n?1n??3n?23nn?23n故该级数收敛.
3n?n! (2)un?,
nnun?13n?1(n?1)!nnnn1n3lim?lim??lim3()?3lim(1?)??1 nn??un??(n?1)n?1n??n??n?1n?1e3n!n故该级数发散. (3) un?nsin1, 2nulimn?1?limn??un??n故该级数收敛.
(n?1)sin12n?1?lim2n?1n??11nsinn22n?1sin11nn?112????1, 12n2sinn2(n!)2(4) un?,
(3n)!- 6 -
第十章 无穷级数习题详解
un?1[(n?1)!]23n!(n?1)2lim?lim??lim?0?1, n??un??[3(n?1)]!(n!)2n??(3n?1)(3n?2)(3n?3)n故该级数收敛. (5)un?lnnn2n,
un?1ln(n?1)n2n1ln(n?1)n1lim?lim??lim???1, n?1n??un??n??2lnnlnnn?12n?12n故该级数收敛.
un?1nn(n?1)n?1n!n?1n1(6)un?,lim?lim?n?lim()?lim(1?)n?e?1,
n??(n?1)!n??n??n!n??unnnn故该级数发散.
n2(7)un?n,
3un?1(n?1)23n1n?121lim?limn?1?2?lim()??1, n??un??n??3n33nn故该级数收敛.
3. 用根值判别法判定下列各级数的敛散性:
?nn12(1) ?(); (2)?(1?)n;
nn?15n?2n?1?n?2n2)??3nn(3)? ; (4); nn1?e2n?1n?1?b(5)?()n,其中an?a(n??),an,b,a均为正数;
n?1an(??x?(6)???a??n?1?n??n(x?0,liman?a,an?0).
n??解(1)由于limnun?limn(n??n??nnn1)?lim??1,
n??5n?25n?25故该级数收敛.
1n21n(2) 由于limun?lim(1?)?lim(1?)?e?1,
n??n??n??nnnn故该级数发散.
(3) 由于limnun?limn??n??n(n?2n22)(1?)n12ne2nn?lim?lim(1?)??1, nn??n??22n22- 7 -
第十章 无穷级数习题详解
故该级数发散.
n33(4) 由于limnun?limn??1,故该级数发散.
n??n??1?ene(5) limnun?limn(n??n??bnbb)?lim?
n??aananbb?1,即b?a,该级数收敛;当?1,即b?a,该级数发散; aab当?1,即b?a,不能判断. a当
(6) limnun?limn(n??n??xnxx)?lim?
n??aananxx?1,即x?a,该级数收敛;当?1,即x?a,该级数aa1)当a?0时,该级数发散 2)当0?a??时,有当发散;
当
x?1,即x?a,根值法不能判断. a4. 判别下列级数的敛散性:
??3323334n(1)?2()?3()?4()??; (2)(n?1)sinn;
44442n?1?1111?sin)???(?sin)??; 22nn222(4)ln(1?2)?ln(1?2)?ln(1?2)??;
123???2n(5)2?sin?2?sin2???2?sinn??;
3332n?11?ncos??3; (7)(en?en?2). (6)??n2n?1n?1(3)(1?sin1)?(n解(1)un?n(),limnun?limnn()?limnn?n??n??n??34n3433??1, 44故该级数收敛. (2)un?(n?1)nsin?2n,limnun???,,所以发散.
n??11113!1?sin??3?o(3)11n?limnnnn?0,故该级数收敛. (3) un??sin,limnn??11nnn??n2n2(4) un?ln(1?222)ln(1?)~(n??), ,因 222nnn- 8 -
第十章 无穷级数习题详解
ln(1?故limn??22)n2?limn2?2,
n??11n2n2而
1收敛,故该级数收敛. ?2nn?1n??2n2(5) un?2sinn,因sinn?n,有2sinn?()?,?()n?收敛,
33333n?13n????由比较收敛法,故该级数收敛.
ncos2(6) un?n?n?ncos23?n,limnn?1?1, 3,因
2n2n2nn??2n2而级数
n收敛,由比较收敛法,故该级数收敛. ?nn?121?n?(7) un?e?e1n?2, lime?e?2?1(由罗比达法则),故该级数收敛.
n??1n21n?1n5.判别下列级数是否收敛?若收敛的话,是绝对收敛还是条件收敛?
1; nn8nn?1n?1??n?11n?1n?1(3)?(?1)sin3; (4)?(?1)ln;
nnn?1n?1(1)
?(?1)?n?11; (2)
?(?1)n?1?1111?????(a不为负整数); 1?a2?a3?a4?a1111(6)?????;
ln2ln3ln4ln5(5)?(7)
1?1?1?sin?sin?sin??; ?22?33?44112(8)sin?sin122?sin132?sin?142??.
为交错级数,且un?un?1,limun?0,故该级
n??解 (1)un?(?1)n?11n,显然
??un?1n数收敛,又因为
?un??n?1n?1?1n??n?1?1n12是p?级数,p?1?1, 2故
?un?1?n发散,即原级数是条件收敛.
- 9 -
第十章 无穷级数习题详解
?111(2) 因为?un??n,nun?n ??1,故?un收敛,即原级数是绝对收敛。n8n8n8n?1n?1n?1??1??311n(3) 因为?un??sin3,lim?1,而?3收敛,故?un收敛,即原级数是绝
n??1nn?1n?1n?1nn?13n??sin对收敛。 (4) un?(?1)n?1?n?1n?1n?2ln?ln?un?1,,显然?un为交错级数,且un?lnnnn?1n?1limun?0,故该级数收敛。
n??1ln(1?)????n?1?11n又因为 ?un??ln??ln(1?),lim?1而?发散,故?un发
n??1nnn?1n?1n?1n?1nn?1n散,即原级数是条件收敛.
?111??un?1,(5) un?(?1),显然?un为交错级数,且un?n?an?a(n?1)?an?1nlimun?0,故该级数收敛;
n??1??11n?a又因为 ?un??,lim?1而?发散,故?un发散,即原级数是条件
n??1n?an?1n?1n?1nn?1n??收敛. (6) un?(?1)n?1?111??un?1,,显然?un为交错级数,且un?ln(1?n)ln(1?n)ln(2?n)n?1limun?0,故该级数收敛,
n???1111?又因为 ?un??,因un?,由比较收敛法,而?发
ln(1?n)1?n1?n)n?1n?1ln(n?11?n???散,故
?un?1?n发散,即原级数是条件收敛.
? (7) 因为
?un??n?1n?1?n1?sinn?1?n?1,因sin?n?1?1 ,而
1?sinn?1?n?1?1?n?1,
??n?1?1n?1收敛,故
?un?1收敛,即原级数是绝对收敛。
- 10 -