第十章 无穷级数习题详解
3.(略)
六、傅里叶级数的计算
1.将f(x)?x在(0,2)上展开成正弦级数和余弦级数.
2.将f(x)?cosx在0?x??内展开成以2?为周期的正弦级数,并在?? π?x?? π写出该级数的和函数.
3.将f(x)??? x ( ???x?? )展开成以2为周期的傅立叶级数,并由此求级数
?的和. ??nn??六.傅里叶级数的计算解答 1.解:f(x)?x正弦级数
?x?(0,2)
?x,x?(0,2]?对f(x)作奇延拓,得 F(x)??0,x?0
?x,x?[?2,0)?再周期延拓F(x)到(??,??),易见x??2是一个间断点,F(x)的傅里叶系数为
an?0n?0,1,2?
2(?1)n?1412n?xn?xbn??f(x)sindx??xsindx??20222n?n?1,2?
f(x)??4n?x(?1)n?1sin2n?1n??(0?x?2)
余弦级数
?x,x?(0,2]?对f(x)作偶延拓,得F(x)??0,x?0,再周期延拓F(x)到(??,??),则F(x)在
??x,x?[?2,0)?(??,??)内处处连续,且F(x)?f(x),x?(0,2),F(x)的傅里叶系数为:
212f(x)dx?xdx?2 ???202a0?- 31 -
第十章 无穷级数习题详解
an?212n?xn?x4f(x)cosdx?xcosdx?[(?1)n?1]n?1,2? ??222?2202n?bn?0n?1,2?
故 ?1?8?f(x)(2n?1)?2?1n?1)2cos?x(0?x?2)
n?1(222.解 f(x)?cosxx?(0,?)
正弦级数
?cosx,x?(对f(x)作奇延拓,得 F(x)??0,?)?0,x?0 ???cosx,x?(??,0)再周期延拓F(x)到(??,??),易见x?0,是一个间断点
F(x)的傅里叶系数为 an?0n?0,1,2?
b?1?2?11?(?1)n1?(?1)nn????f(x)sinnxdx???0cosxsinnxdx??[n?1?n?1]f(x)?1?8n??2?1sin2nx
n?14n?s(x)??cosxx?(0,?)?(?2?,??)?0x?0,??,?2?
???cosxx?(??,0)?(?,2?)?3.解 f(x)?2?x??2?x0?x?1?2x?0 ??2?x?1?x?0a1100???1f(x)dx??0(2?x)dx???1(2?x)dx?5
- 32 -
n?1,2?
第十章 无穷级数习题详解
an??f(x)cosn?xdx??(2?x)cosn?xdx??(2?x)cosn?xdx
?10?11102[(?1)n?1]?n?1,2?
n2?2bn?0n?1,2? 54故f(x)??22?1?2 ??26n?1n?1cos(2n?1)?x ?2(2n?1)n?1?本章复习题B
1.略
2.略
3.设正项级数{an}单调减少,且明理由.
解 因为{an}单调下降且有下界0,则有liman?a?0,若a?0,由莱布尼茨法则,交错
n???(?1)n?1?nan发散,试问级数?(n?1?1n)是否收敛?并说an?1级数
?(?1)an收敛,与假设矛盾,于是a?0,现在对正项级数?(nn?1??n?11n)可用根式判an?1?1n1n11别法:limn()收敛。 )?lim??1,故?(n??n??a?1a?1an?1a?1n?1nnπ4 04. 设an???1tanxdx.(1)求?(an?an?2)的值;(2)试证:对任意的常数??0,
n?1nn?级数
an收敛. ??nn?1解 (1)不必先求出an,只须先求出an?an?2
?0?0?0an?an?2??4tannx(1?tan2x)dx??4tannxsec2xdx??4tannxdtanx?1n?1- 33 -
第十章 无穷级数习题详解
??1111(an?an?2)????(?)?1 ?n?1n?1nn?1n(n?1)n?1n??(2)证明 显然an?出估计:
?40n?40tanxdx?0(n?1,2,?),为了证明正项级数?nan收敛,对an作?nn?1?an??tanxdx?1t?tanx1?0tndarctant
1tn11n??dt?tdt???001?t2n?1n(n?1,2,?)
??anan11于是 0?????1,由于??1?1,???1收敛,故??也收敛。
nnnnn?1n?11xn5.求幂级数?n的收敛区间,并讨论级数在该区间端点处的收敛性. ?nnn?13?(?2)?an3n?1?(?2)n?1n?1解 收敛半径为:R??lim?limn??3 nn??n???an?1n3?(?2)1收敛区间为(?3,3).
?3n13n111当x?3时,原级数为正项级数 ?n,因,且发?~?nnnn3?(?2)nnn?1nn?13?(?2)?3n1散,故正项级数 ?n发散。 ?nnn?13?(?2)?(?1)n3n1当x??3时,原级数为?n?,该级数为交错级数,且满足莱布尼茨法则,nnn?13?(?2)?(?1)n3n1故该级数 ?n?收敛. nn3?(?2)n?1??1?x2?arctanx6.设函数f(x)??x??1x?0,试将f(x)展开成的幂级数,并求级数
xx?0- 34 -
第十章 无穷级数习题详解
(?1)n的和. ?21?4nn?1??1n2n解 (arctanx)???(?1)x?21?xn?0(x?1)
x2n?1积分得 arctanx??(arctant)?dt??(?1)?tdt??(?1).
002n?1n?0n?0x?nx2n?n当x??1时,右端级数均收敛,又arctanx在x??1连续,所以收敛域为[?1,1],
1?x21?x2f(x)?arctanx?xxx2n ?(1?x)?(?1)2n?1n?02?nx2n?1 (?1)?2n?1n?0?n2n?2?x2nnx ??(?1)??(?1)2n?1n?02n?1n?0?n2n?x2nn?1x ??(?1)??(?1)2n?1n?12n?1n?0?n?1??(?1)n[n?1??11?]x2n2n?12n?1x?[?1,1],x?0
?1??(?1)nn?122nx1?4n2当x?0时,f(x)?1,于是
f(x)?1??(?1)nn?1?2x2n21?4nx?[?1,1],
- 35 -