第十章 无穷级数习题详解
1???21n(8) 因为 ?un??sin2,lim?1,故?un收敛,即原级数是绝对收敛。
n??1nn?1n?1n?12nsin
习题 10.3 1. 求下列幂级数的收敛域:
xx2x3x4(1)x?2x?3x??; (2)??2?2?2??;
123422223xx2x32???; (4)2x?2x?2x3??; (3)?22?42?4?61?12?13?1234xxxx?2?3?4??; (5)
2?1!2?2!2?3!2?4!23xx2x3x4?????; (6)2341?32?33?34?3(7)
?(?1)n?1??n?1n?x2n?1n?1(x?1); (8)?(?1); (2n?1)!nn?1?(x?5)n2n?12n?2(9)?; (10)?. xn2nn?1n?1解 (1)un?nxn,an?n,??liman?1n?1?lim?1,
n??an??nn所以收敛半径R?1??1
?当x?1时,原级数为
?n,limn???0,该级数发散
n?1n??当x??1时,原级数为
?(?1)n?1?nn,lim(?1)nn???0,该级数发散
n??因而该级数的收敛域为 (?1,1).
an?1xnn2n1,an?(?1)2,??lim(2) un?(?1)?lim?1, 22n??n??nnan(n?1)n所以收敛半径R?1??1.
?(?1)n当x?1时,原级数为?,为交错级数,该级数收敛. 2nn?1- 11 -
第十章 无穷级数习题详解
当x??1时,原级数为
?nn?1?12,该级数也收敛,
因而该级数的收敛域为 [?1,1].
xn1(3)un?,an?,
2?4?6?(2n)2?4?6?(2n)??liman?12?4?6?(2n)1?lim?lim?0,
n??an??2?4?6?(2n)?(2n?2)n??2n?2n1故收敛半径R?????,因而该级数的收敛域为 (??,??).
2n2nnx,an?2, (4) un?2n?1n?1an?12n?1n2?12(n2?1)??lim?lim?n?lim?2, 2n??an??(n?1)2?1n??2(n?1)?1n所以收敛半径R?1??1. 2??12n1n1当x?时,原级数为?2,该级数收敛. ?()??222n?1n?1n?1n?1?1(?1)n当x??时,原级数为?,该级数也收敛, 22nn?1因而该级数的收敛域为 [?11,]. 22xn1,an?n,, (5)un?n2?n!2?n!an?12n?n!1??lim?limn?1?lim?0,
n??an??2n??2(n?1)?(n?1)!n故收敛半径R?1????,因而该级数的收敛域为 (??,??).
an?111n?3n1nx,a?,(6) un?, ??lim?lim?nnnn?1n??n??n?3n?3an3(n?1)?3- 12 -
第十章 无穷级数习题详解
所以收敛半径R?1??3.
当x?3时,原级数为
1,该级数发散. ?nn?1??(?1)n当x??3时,原级数为?,该级数为交错级数,收敛,
nn?1因而该级数的收敛域为 [?3,3).
(7) 因为该级数缺少偶次幂,我们根据比值审敛法来求收敛半径
un?1x2n?1(2n?1)!x2lim?lim??2n?1?lim?0, n??un??(2n?1)!n??2n?(2n?1)xn因而该级数的收敛域为 (??,??).
n(x?1)n1n?1t,an?(?1)n?1, ,令t?x?1,则un?(?1)nnn(8) un?(?1)n?1??liman?1n1?lim?1,收敛半径R??1,有 x?1?1,即0?x?2
n??an??n?1?n?(?1)2n?1?(?1)当x?0时,原级数为?,该级数发散. ??nn?1n?1n(?1)n?1当x?2时,原级数为?,该级数为交错级数,收敛.
nn?1?因而该级数的收敛域为 (0,2]
(9) 因为该级数缺少奇次幂,我们根据比值审敛法来求收敛半径
un?1(2n?1)x2n2n(2n?1)x2x2. lim?lim???lim?n?12n?2n??un??n??2?(2n?1)22(2n?1)xnx2?1,即?2?x?2时,该级数收敛. 当2x2?1,即x?2时,该级数发散. 当2当 x?2时,原级数为?2n?1,该级数发散. 2n?1?- 13 -
第十章 无穷级数习题详解
当 x??2时,原级数也为
?2n?1,该级数发散. 2n?1?因而该级数的收敛域为 (?2,2). (10) un?(x?5)nn,令t?x?5,则un?tnn,an?1n
??liman?11n?lim?1,收敛半径R??1,有 x?5?1,即4?x?6
n??an???n?1n当x?4时,原级数为
?n?1??(?1)nn1n,该级数为交错级数,收敛.
当x?6时,原级数为
?n?1,该级数发散.
因而该级数的收敛域为 [4,6).
2. 利用逐项求导或逐项积分,求下列级数在收敛区间内的和函数: (1)1?2x?3x?4x??; (2)
?23?(?1)n?1?n?1nxn?1;
x4n?1(3)?.
n?14n?1?x3x51???,并求?(4)x?的和.
n35(2n?1)2n?1解(1)由于
?x?0?nxdx???nxdx??xn?n?1n?1n?1n?10n?1?x?x. 1?x故有
?nxn?1?n?1x1?()??1?x(1?x)2n?1n?1?(?1?x?1).
x?(2) 由于
??x?0?(?1)n?1nxdx???(?1)n?10n?1nxdx??(?1)n?1xn?n?1n?1x. 1?x故有
x1n?1n?1?(?1)nx?()??1?x(1?x)2n?1?(?1?x?1).
??x4n?1x4n?1x44n(3) 由于 (?)???()???x?1?x4n?14n?1n?14n?1n?1?(?1?x?1).
xx4n?1x411?x1故有 ???dx?ln?arctanx?x(?1?x?1). 4041?x21?xn?14n?1- 14 -
第十章 无穷级数习题详解
?x2n?1?1??(x2n?1?(4) 由于 (?)??)??(?1?x?1),
n?12n?1?x2n?2?1n?12nn?11?x2?故有 ?x2n?1?x11(?1?x?1),令x?1, 得
n?12n?1?01?x2dx?1?x2ln1?x21)2n?1??1?(1)2n(?21?2 n?1(2n?1)2n??n?1(2n?1)2??n?1(2n?1)1?1?12?122ln?2ln(1?2)(?1?x?1) . 1?122题 10.4
1. 求下列函数的麦克劳林公式:
(1)f(x)?xex; (2)f(x)?cos2x;
(1)ex?1?x?x22!?x33!???xn?1e?x解 n(n?1)!?n!x(0???1).
f(x)?xex?x?x2?x3x4xne?xn?12!?3!???(n?1)!?n!x(0???1).
(2) 因为 cosx?1?1214(?1)n2n2!x?4!x???(2n)!x?o(x2n).
则有 cos2x?1?114(?1)n22!(2x)?4!(2x)???(2n)!(2x)2n?o(x2n)
?1?2x2?2x4???(?1)n22nn)!x2n?o(x2n3(2).
2. 求下列函数展开成关于x的幂级数,并求收敛区域:
(1)ln(a?x)(a?0); (2) ax; (3)
1x2?3x?2; (4)sin2x; (5)cosx2; 解 (1) ln(a?x)?ln[a(1?xa)]?lna?ln(1?xa) ?由于 ln(1?x)??(?1)n?1xn,
n?1n- 15 -
习