第十章 无穷级数习题详解
?(?1)nx?1n12n?3(1); (2)?(?1)n. x()n2x?12nn?2n?1n3. 求下列级数的收敛区间:
??x2n1?n2n(1)?; (2)?(1?)x.
(2n?1)(2n)nn?1n?14. 求下列幂级数的收敛区间和收敛半径:
??(1)??(x?1)2nn?32nn?13n?(?2)n; (3)?(x?1)n;
nn?1?5. 将函数f(x)?6. 将函数f(x)?11?x1ln?arctanx?x展成为关于x的幂级数. 41?x2x29?x7. 求下列幂级数的收敛域及和函数.
?n展成x的幂级数.
?n2n(1)?n(n?1)x; (2)?x.
n?1n?1n!四.计算题解答
1.判断下列级数的敛散性: (1)因为1?cos?n?2sin2?2n,而n??时,sin?2n~?2n,
当p?11时,该级数收敛,当0?p?时,该级数发散。
22n2nnn2nu?lim?lim??1 (2)un?n,nnn??n??n3333?2()n?1()n?122故该级数收敛。
?(3)
?(?1)n?1n?1k?n(k?0) 2nk?nk?(n?1)??un?1,limun?0, 22n??n(n?1)该级数为交错级数,且un?故该级数收敛,
????k?n111又因为 ?un??2?k?2??,而?发散,故?un发散,即原级
n?1n?1nn?1nn?1nn?1nn?1??数是条件收敛.
- 26 -
第十章 无穷级数习题详解
sin(4)由于un??3n, nsin?nsinlimun?13n?1??limn??un??n?1nsin???3n?limn??3n?1?3n?1n?1?1,
??3n?13sin3n?13n故该级数收敛。
(5)该级数为交错级数,且un?故该级数收敛,
???111又因为 ?un????,而?发散,故?un发散,即原级数是条
n?sinnn?1n?1n?1nn?1nn?1??11??un?1,limun?0,
n??n?sinn(n?1)?sin(n?1)件收敛.
un?12nn!2n?1(n?1)!nnnn2(6)由于un?n,lim?lim??lim2?()??1, n?1nn??n??n??nunn?1e(n?1)2n!故该级数收敛。
(7)该级数为交错级数,且un?该级数收敛,
???111又因为 ?un????,而?发散,故?un发散,即原级数是条件
n?1n?1n?lnnn?1nn?1nn?1??11??un?1,limun?0,故
n??n?lnn(n?1)?ln(n?1)收敛.
(8)由于un?ntan?2n,
ulimn?1?limn??un??n(n?1)tanntan?2n?1?limn??tan?2n?1??2ntan????1n?11??1,
2n22n2n?12n故该级数收敛。
(?1)nx?1nx?1(?1)n),令t?,an?, 2.(1) un?2(2x?1n?x?1nan?11x?1n2R??1,故收敛半径, ?1,即x?0 ??lim?lim?1n??an??(n?1)2?x?1n- 27 -
第十章 无穷级数习题详解
当x?0时,原级数为
?nn?1?12,该级数收敛
因而该级数的收敛域为 [0,??)
(2)因为该级数缺少偶次幂,我们根据比值审敛法来求收敛半径
un?1x2n?12n?nx2 lim?lim?n?1?2n?3?n??un??22?(n?1)xnx2?1,即?2?x?2时,该级数收敛 当2x2?1,即x?2时,该级数发散 当2(2)?3当 x?2时,原级数为?(?1),该级数收敛
nn?1?n当 x??2时,原级数也为
?(?1)n?1?3n?3(2)?3,该级数也收敛 n因而该级数的收敛域为 [?2,2]
tn13.(1)令t?x,则有un?, ,an?(2n?1)(2n)(2n?1)(2n)2??liman?11(2n?1)(2n)?lim?1,故收敛半径R??1, 即x2?1,
n??an??(2n?1)(2n?2)?n故收敛区间为(?1,1) (2)un?(1???liman?1n??an1?n2n12)x,an?(1?)?n nn1?(n?1)2(1?)1n?1?lim?e?1,故收敛半径R??e
n??12?(1?)?nn故收敛区间为(?e,e)
tn1,a?4.(1)令t?(x?1),则有un? nn?32nn?32n2- 28 -
第十章 无穷级数习题详解
an?1n?32n12x?1?9, ,,即??lim?lim?n??an??(n?1)?32n?29nx?1?3,故收敛半径R?1??3,故收敛区间为(?2,4)
3n?(?2)nn3n?(?2)nt,an?(2)令t?(x?1),则有un? nnan?1113n?1?(?2)n?1n,故收敛半径R??, ??lim?lim?n?3nn??an???3n?13?(?2)n即x?1?142,故收敛区间为(?,?) 333x1??5. 解 f(x)?299?xxx?x???(?1)n()2n x9n?031?()232n?1x2n?1?n?1x x?(?3,3) ??(?1)2n?2??(?1)2n33n?0n?1?n6.(1)解 un?n(n?1)xn,an?n(n?1),
??liman?11(n?1)(n?2)?lim?1,故收敛半径R??1,
n??an???n(n?1)n当x?1时,原级数为
?n(n?1),该级数发散;
n?1?当x??1时,原级数为
?(?1)n?1?nn(n?1),该级数发散,故收敛域为(?1,1)
?n(n?1)xn?1?n?(?xn?1?n?1x22x )???x?()???x?31?x(1?x)n2nn2x,an?(2) 解 un?, n!n!an?1(n?1)2n!n?1??lim?lim?2?lim2?0,
n??an??(n?1)!nn??nn故收敛半径R?1????,故该级数的收敛域为(??,??)
- 29 -
第十章 无穷级数习题详解
??n2nnnnx?x?xxn?1???n?1n!n?1(n?1)!n?1(n?1)!??n?1?1n?1n?1n?1?1?x?x?x(?x??xn?1)n?1(n?1)!n?1(n?1)!n?1(n?1)!?
xn?xn?x(x???)?x(xex?ex)?xex(x?1)。
n?0n!n?0n!?五、证明题
1.设an?0且limnan?A?0,证明
n???an?1?n发散.
2.证明:若
?a收敛,则?2nn?1?an绝对收敛. n?1n?3.设
an?1bn?1?(an, bn?0, n?1, 2, ?),试证: anbn(1)如果
?bn?1??n收敛,则
?an?1??n收敛;
(2)如果
?an?1n发散,则
?bn?1n发散.
五.证明解答
1.因为limnan?A?0,所以由极限定义,对任意给定的??0,存在正整数N,
n??使得当n?N时,有|nan?A|??成立,即
A???nan?A??
??A??A??A??A???an??an,也就是说,有,此即而级数?发散,所以级数?annnnnn?1n?1发散.
12???aann2an122.因为??,而级数?2和级数?an都绝对收敛,所以级数?n绝
n22n?12nn?1n?1n对收敛.
- 30 -