? 文刀川页丛书
图3-121
46.如图3-122所示,足够长的U形导体框架的宽度l=0.5m,电阻忽略不计,其所在平面与水平面成α=37°角,磁感强度B=0.8T的匀强磁场方向垂直于导体框平面,一根质量为m=0.2kg、有效电阻R=2Ω的导体棒MN垂直跨放在U形框架上.该导体棒与框架间的动摩擦因数μ=0.5,导体棒由静止开始沿架框下滑到刚开始匀速运动时,通过导体棒截面的电量共为Q=2C.求: ?(1)导体棒做匀速运动时的速度; ?(2)导体棒从开始下滑到刚开始匀速运动这一过程中,导体棒的有效电阻消耗的电功(sin37°=0.6,cos37°=0.8,g=10m/s2).
图3-122 图3-123 图3-124
? 47.一个质量为m、带电量为+q的运动粒子(不计重力),从O点处沿+y方向以初速度v0射入一个边界为矩形的匀强磁场中,磁场方向垂直于xOy平面向里,它的边界分别是y=0,y=a,x=-1.5a,x=1.5a,如图3-123所示,改变磁感强度B的大小,粒子可从磁场不同边界面射出,并且射出磁场后偏离原来速度方向的角度θ会随之改变,试讨论粒子可以从哪几个边界射出并与之对应的磁感强度B的大小及偏转角度θ各在什么范围内?
48.如图3-124所示,半径R=10cm的圆形匀强磁场区域边界跟y轴相切于坐标系原点O,磁感强度B=0.332T,方向垂直于纸面向里.在O处有一放射源,可沿纸面向各个方向射出速率均为v=3.23106m/s的α粒子,已知α粒子的质量m=6.64310-27kg,电量q=3.2310-19C.求: ?(1)画出α粒子通过磁场空间做圆运动的圆心点轨迹,并说明作图的依据.
?(2)求出α粒子通过磁场空间的最大偏转角.
?(3)再以过O点并垂直于纸面的直线为轴旋转磁场区域,能使穿过磁场区且偏转角最大的α粒子射到正方向的y轴上,则圆形磁场区的直径OA至少应转过多大角度? ?49.如图3-125所示,矩形平行金属板M、N,间距是板长的2
/3倍,PQ为两板的对称轴
线.当板间加有自M向N的匀强电场时,以某一速度自P点沿PQ飞进的带电粒子(重力不计),经时间Δt,恰能擦M板右端飞出,现用垂直纸面的匀强磁场取代电场,上述带电粒子仍以原速度沿PQ飞进磁场,恰能擦N板右端飞出,则
?(1)带电粒子在板间磁场中历时多少?
?(2)若把上述电场、磁场各维持原状叠加,该带电粒子进入电磁场时的速度是原速度的几倍才能沿PQ做直线运动?
电学计算题第11页(共39页)
? 文刀川页丛书
图3-125 图3-126 图3-127
50.如图3-126所示,环状匀强磁场B围成的中空区域,具有束缚带电粒子作用.设环状磁场的内半径R1=10cm,外半径为R2=20cm,磁感强度B=0.1T,中空区域内有沿各个不同方向运动的α粒子,试计算能脱离磁场束缚而穿出外圆的α粒子的速度最小值,并说明其运动方向.(已知质子的荷质比q/m=108C/kg)
?51.如图3-127所示,在光滑水平直轨道上有A、B两个小绝缘体,它们之间由一根长为L的轻质软线相连(图中未画出).A的质量为m,带有正电荷,电量为q;B的质量为M=4m,不带电.空间存在着方向水平向右的匀强电场,场强大小为E.开始时外力把A、B靠在一起(A的电荷不会传递给B)并保持静止.某时刻撤去外力,A将开始向右运动,直到细线被绷紧.当细线被绷紧时,两物体间将发生时间极短的相互作用,已知B开始运动时的速度等于线刚要绷紧瞬间A的速度的1/3,设整个过程中A的带电量保持不变.求: ?(1)细线绷紧前瞬间A的速度v0.
?(2)从B开始运动到线第二次被绷紧前的过程中,B与A是否能相碰?若能相碰,求出相碰时B的位移大小及A、B相碰前瞬间的速度;若不能相碰,求出B与A间的最短距离及线第二次被绷紧前B的位移.
?52.如图3-128(a)所示,两平行金属板M、N间距离为d,板上有两个正对的小孔A和B.在两板间加如图3-128(b)所示的交变电压,t=0时,N板电势高于M板电势.这时,有一质量为m、带电量为q的正离子(重力不计),经U=U0/3的电压加速后从A孔射入两板间,经过两个周期恰从B孔射出.求交变电压周期的可能值并画出不同周期下离子在两板间运动的v-t图线.
图3-128 图3-129
53.如图3-129所示,在半径为R的绝缘圆筒内有磁感强度为B的匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通.两板间距离为d,与电动势为的电源连接,一带电量为-q、质量为m的带电粒子,开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出.已知带电粒子与筒壁的碰撞是弹性碰撞.求:(1)筒内磁场的磁感强度大小;(2)带电粒子从A点出发至从C点射出所经历的时间.?
54.如图3-130所示,在垂直xOy坐标平面方向上有足够大的匀强磁场区域,其磁感强度B=1
-16-86
T,一质量为m=3310kg、电量为q=+1310C的质点(其重力忽略不计),以v=4310m
-8
/s速率通过坐标原点O,之后历时4π310s飞经x轴上A点,试求带电质点做匀速圆周运动的圆心坐标,并在坐标系中画出轨迹示意图.
电学计算题第12页(共39页)
? 文刀川页丛书
图3-130 图3-131 图3-132
?55.一个质量为M的绝缘小车,静止在光滑水平面上,在小车的光滑板面上放一个质量为m、带电量为+q的带电小物体(可视为质点),小车质量与物块质量之比M∶m=7∶1,物块距小车右端挡板距离为l,小车车长为L,且L=1.5l,如图3-131所示,现沿平行车身方向加一电场强度为E的水平向右的匀强电场,带电小物块由静止开始向右运动,之后与小车右端挡板相碰,若碰后小车速度大小为碰撞前小物块速度大小的1/4,并设小物块滑动过程及其与小车相碰的过程中,小物块带电量不变.
?(1)通过分析与计算说明,碰撞后滑块能否滑出小车的车身?
?(2)若能滑出,求出由小物块开始运动至滑出时电场力对小物块所做的功;若不能滑出,则求出小物块从开始运动至第二次碰撞时电场力对小物块所做的功.
56.如图3-132所示,在x≥0区域内有垂直于纸面的匀强磁场.一个质量为m、电量为q的质子以速度v水平向右通过x轴上P点,最后从y轴上的M点射出,已知M点到原点O的距离为H,质子射出磁场时速度方向与y轴负方向夹角θ=30°,求: ?(1)磁感强度的大小和方向.
?(2)如果在y轴右方再加一个匀强电场就可使质子最终能沿y轴正方向做匀速直线运动.从质子经过P点开始计时,再经多长时间加这个匀强电场?并求电场强度的大小和方向.
?57.某空间存在着一个变化的电场和一个变化的磁场,电场方向向右(如图3-133a中由B到C的方向),电场变化如图3-133b中E-t图象,磁感强度变化如图3-133c中B-t图象.在A点,从t=1s(即1s末)开始,每隔2s,有一个相同的带电粒子(重力不计)沿AB方向(垂直于BC)以速度v射出,恰都能击中C点,若
=2
,且粒子在AC间运动的时间小于1s,求:(1)图
线上E0和B0的比值,磁感强度B的方向;(2)若第1个粒子击中C点的时刻已知为(1+Δt)s,那么第2个粒子击中C点的时刻是多少?
图3-133
? 58.如图3-134所示的电路中,4个电阻的阻值均为R,E为直流电源,其内阻可以不计,没有标明正负极.平行板电容器两极板间的距离为d.在平行板电容器两极板间有一质量为m、电量为q的带电小球.当开关S闭合时,带电小球静止在两极板间的中点O上.现把开关S打开,带电小球便往平行板电容器的某个极板运动,并与此极板碰撞,设在碰撞时没有机械能损失,但带电小球的电量发生变化,碰后小球带有与该极板相同性质的电荷,而且所带电量恰好刚能使它运动到平行板电容器的另一极板.求小球与电容器某个极板碰撞后所带的电荷.
电学计算题第13页(共39页)
? 文刀川页丛书
图3-134
? 59.如图3-135甲所示,两块平行金属板,相距为d,加上如图3-135乙所示的方波形电压,电压的最大值为U,周期为T,现有一离子束,其中每个粒子的带电量为q,从与两板等距处沿与板平行的方向连续地射入,设粒子通过平行板所用的时间为T(和电压变化的周期相同),且已知所有的粒子最后都可以通过两板间的空间而打在右端的靶上,试求粒子最后打在靶上的位置范围(即与O′的最大距离和最小距离),不计重力的影响.
图3-135
60.一质量为m、带电量为q的粒子以速度v0从O点沿y轴正方向射入磁感强度为B的一圆形匀强磁场区域,磁场方向垂直于纸面.粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向夹角为30°,如图3-136所示.带电粒子重力忽略不计.试求: ?(1)圆形磁场区域的最小面积.
?(2)粒子从O进入磁场区到达b点所经历的时间及b点的坐标.
图3-136 图3-137
61.如图3-137(a)所示,在坐标xOy平面的第Ⅰ象限内,有一个匀强磁场,磁感强度大小恒为B0,方向垂直于xOy平面,且随时间作周期性变化,如图3-137(b)所示,规定垂直xOy平面向里的磁场方向为正.一个质量为m、电量为q的正粒子,在t=0时刻从坐标原点以初速度v0沿x轴正方向射入,在匀强磁场中运动,运动中带电粒子只受洛沦兹力作用,经过一个磁场变化周期T(未确定)的时间,粒子到达第Ⅰ象限内的某一点P,且速度方向沿x轴正方向. ?(1)若O、P连线与x轴之间的夹角为45°,则磁场变化的周期T为多大?
?(2)因P点的位置随着磁场周期的变化而变动,试求P点的纵坐标的最大值为多少?
?62.如图3-138所示,一个质量为m、带电量为q的正离子,在D处沿着图示的方向进入磁感强度为B的匀强磁场,此磁场方向垂直纸面向里,结果离子正好从离开A点距离为d的小孔C沿垂直于AC的方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在B处,而B离A点距离为2d(AB⊥AC),不计粒子重力,离子运动轨迹始终在纸面内.求:
电学计算题第14页(共39页)
?
?(1)离子从D到B所需的时间; ?(2)离子到达B处时的动能.
文刀川页丛书
图3-138 图3-139
63.如图3-139所示,一带电量为q液滴在一足够大的相互垂直的匀强电场和匀强磁场中运动.已知电场强度为E,方向竖直向下,磁感强度为B,方向如图.若此液滴在垂直于磁场的平面内做半径为R的圆周运动(空气浮力和阻力忽略不计).
?(1)液滴的速度大小如何?绕行方向如何?
?(2)若液滴运行到轨道最低点A时,分裂成两个大小相同的液滴,其中一个液滴分裂后仍在原平面内做半径为R1=3R的圆周运动,绕行方向不变,且此圆周最低点也是A,问另一液滴将如何运动?并在图中作出其运动轨迹.
?(3)若在A点水平面以下的磁感强度大小变为B′,方向不变,则要使两液滴再次相碰,B′与B之间应满足什么条件?
参考解答 1.解:电容器两端电压 UC=Q/C=6V,R4/R5=U4/( ?∴U4=8V.
?若 U1=6+8=14V,则有
?U1/(-U1)=R1/R2,∴R2=7.14Ω. ?若U′1=8-6=2V,则有 ?U′/( ?
-U′1)=R1/R2,∴R2=110Ω.
-U4),
2.解:(1)接通1后,电阻R1、R2、R3、R4串联,有 ?I=/(R1+R2+R3+R4)=0.1A. ?电容器两端电压
?UC=U3+U4=I(R3+R4)=4V.
?电容器带电量 Q=CUC=1.2310-3C.
?(2)开关再接通2,电容器放电,外电路分为R1、R2和R3、R4两个支路,通过两支路的电量分别为I1t和I2t,I=I1+I2;I1与I2的分配与两支路电阻成反比,通过两支路的电量Q则与电流成正比,故流经两支路的电量Q12和Q34与两支路的电阻成反比,即 ?Q12/Q34=(R3+R4)/(R1+R2)=40/20=2, ?Q12+Q34=Q=1.2310C, 所以 Q12=2Q/3=0.8310-3C. ?
3.解:(1)对物体,根据动能定理,有 ?qEL1=(1/2)mv12,得 v1=
2qEL1m-3
.
?(2)物体与滑板碰撞前后动量守恒,设物体第一次与滑板碰后的速度为v1′;滑板的速度为v,
电学计算题第15页(共39页)