?f(cos?x)sinxdx??2?f(cosx)d(cosx),
x),
f(tanx)secxdx??f(tanx)d(tandx???f(arcsinx)11?x2?f(arctanx)d(arctanx),
f(arcsinx)11?x2dx??f(arctan)2d(arctanx),
?f???22x?a???xx?a2dx??f???22?x?a??d???22x?a??。
?例4 求下列不定积分 (1)?1e?ex?xdx; (2)?(1?e)1?e2xx2dx;
(3)?解: (1)?1(1?e)x2dx。
1e?exxdx??x?ee2xx?1dx??(e2x1x)?12dex?arctane?C;
x(2)?(1?e)1?e2x2dx??1?2e?e1?e2xxdx??dx?2?1?exex2xdx
?x??1?(exx1x)de2x?x?arctane?C
(3)?1(1?e)x2dx???1?e?e(1?e)x2xdx??1?e?(1?ex1xdx??(1?exexx)2dx
?1?e?e1?exxdx?1x)d(1?e) 2 ??dx??11?exd(1?e)?x11?ex?(1?e1x)2d(1?e)
x(?e)? ?x?ln1?C
(二)第二换元法
例5 求下列不定积分
16
(1)?dxx?a?xdxxx(x?2)22(a?0); (2)?dxx21?x2
(3)?(x?2)。
分析:这些被积函数中都含有根号,可以作适当的换元去掉根号:第(1)题中可令
x?asint,第(2)题中可令x?tant,第(3)题中可令x?2sec2t。特别注意,第(3)
题中将要使用的换元x?2sec2t同时使得x与x?2得以开方而不含有根号,可谓一箭双雕。
解: (1)?dxx?a?x22x?asint????1212?asint?acostdt
(sint?cost)?(cost?sint)sint?cost12d(sint?cost)sint?cost2acost ? ??dt 12?dt??dt?2?t?ln|sint?cost|??C
1?xx?ln|? ??arcsin2?aa?a?xa?|??C ??dx。这类积分刻化为
dx
注意:变换后的积分?costsint?costdx?dt形如?asinx?bcosxcsinx?dcosx?csinasinx?bcosxx?dcosx?A(csinx?dcosx)?B(csinx?dcosx)?csinx?dcosx即假设原积分的分子
asinx?bcosx?A(csinx?dcosx)?B(csinx?dcosx)?
?(Ac?Bd)sinx?(Ad?Bc)cosx
比较sinx与cosx的系数有:Ac?Bd?a,Ad?Bc?b,即可求出A与B。 (2)?dxx2x?tant2????1?x?tandtsect22tsectdt??tansect2tdt??dtsin22t
cost?cost ??sint?2sintcost??csctcottdt??csct?Cdt??1?xx2?C
(3)?
dxxx(x?2)x?2sect?????2sec4sect?secttant2t?2secttant17
dt??sect?sint?C
由x?2sec2t,sect?x2,cost?2x,sint?1?2x?x?2x,
所以原积分?x?2x?C。
例6 求下列不定积分
(1)?x31?x2dx; (2)? 解:(1)[法一] 令x?tant,则
x1?1?x2dx。
?x31?xdx?152?tant?sectd?t?sect?533(se?ct21)setcd
2stec ?135sect?C
3 ?152(1?x)2?2133(1?x)2??C
2 [法二] 令1?x?t,两边微分有xdx1?x2?dt,即xdx?tdt,则
?x31?xdx?2?x21?x?xdx
15t?52 ??(t?1)t?tdt?1552133t?C
3 ?(1?x)2?213(1?x)2??C
2(2)[法一] 令x?tant,则
?1?x1?x2dx??1?sect?sectanttant2tdt
? ?t??1?setc[(sec21?)d1t ]tantd t1?setcsintdt ??tantsectdt??tantdt??1?cost?tant(set?cd1t?)? ?sect?ln|ctos?| ?sect?ln|?12l?n|1t sc?Costec?C |2 ?1?x?ln(1?1?x)?C
18
[法二] 令1?1?x2?t,两边微分后有xdx?(t?1)dt,所以
?1?x1?x2dx??t?1tdt?t?lnt|?|C
?1?x2?ln(1?1?x2)?C
例7 求下列不定积分 (1)?x2100(x?1)dx; (2)?x926(1?x)42dx;
(3)? 解: (1)?dxx(x?1)62; (4)?x(x?1)(x?1)26dx
x2100t?x?1(x?1)dx??????98(t?1)t1002dt??t?2t?1t1002dt
298199 ??(t?2t?99?t?100)dt??197t?97?t?98?t?99?C
??197(x?1)x?sint97?298(x?1)98?199(x?1)99?C
(2)I??(1?xx92)dx????6?9sin9tcost12costdt??tan109t?sectdt
x1?x22tant? ??tan?tdtant?110tant?C???????x102510(1?x)?C
(3)?dxx(x?1)62x?1t1t?22dt???????t261t6t?1t42t?1dt
? ? ? (4)令t?x?1x?15(t?t)?(t?t)?(t?1)?1t?1t?1?564222dt??(t?t?1?421t?12)dt
13t?t?arctatn?C 1?11?arctan?C xx35x53x3,则dt?(1?1x2)dx,于是
19
?x(x?1)(x?1)2642x(1?dx?612?x26(x?1))dx?(1?1x2)dx?)6?x2(x?551x?dtt
??(三)分部积分公式
例8 计算下列不定积分
15t5?C??5(x?1)?C
(1)?(x2?x?1)exdx; (2)?xnlnxdx(n??1) (3)?x2cos2xdx; (4)?xtan (5)? 解:
(1)?(x?x?1)edx????2x2xdx;
xexx2(1?e)dx。
凑微分?(x?x?1)de
2x2x分部积分公式?????????(x?x?1)e??e?(2x?1)dx
x ?(x2?x?1)ex??(2x?1)dex ?(x2?x?1)ex?(2x?1)ex?2?exdx ?(x2?x?2)ex?C
凑微分 (2)?xlnxdx????n1n?1?lnxdxn?1n?1
x1nxdx ?????????lnx??n?1n?1分部积分公式 ?221???lnx???C n?1?n?1?xn?1 (3)?xcosxdx? ????161616x?321?cos2x211?2214142dx dsin2x
1sin?4142x?2xdx cos2x
x?x?x?33?x2xsin2x?xsin2x?2?xd 20