10. 力的合成和分解的基本方法
力的合成和分解的基本方法是平行四边形法则。
作用于物体上同一点的两个力可以合成为作用于该点的一个合力,合力的大小和方向由这两个力的作用线所构成的平行四边形的对角线来表示,这就是力的合成的平行四边形法则。
利用力的平行四边形法则也可以把作用在物体上的一个力分解为两个相交的分力,分力和合力作用于同一点。在实际分解时,通常把一个力沿着两个直角坐标方向进行分解,这样很容易由三角函数进行计算。
11.静力学基本原理的两个推论。
静力学基本原理的两个推论:
(1) 力的可传性原理:作用于刚体上的力,其作用点可以沿着作用线移动到该刚体上任意一点,而不改变力对刚体的作用效果。
必须强调的是,力的可传性原理只适用于刚体而不适用于变形体。当研究物体的内力、变形时,将力的作用点沿着作用线移动,必然使该力对物体的内效应发生改变。
在考虑刚体的平衡问题时,力的三要素可改为“大小、方向、作用线”。 (2) 三力平衡汇交原理:若刚体在三个互不平行的力作用下处于平衡,则此三个力的作用线必在同一平面内且汇交于一点。
由此可知,刚体受不平行的三力作用而平衡时,如果已知其中两个力的方向,则第三个力的方向就可以按三力平衡汇交原理确定。
12.自由体与非自由体
答:在空间能自由作任意方向运动的物体称为自由体,如空气中的气球和飞行的飞机就是自由体。在某一方向的运动受到限制的物体称为非自由体。
13.约束、什么叫约束反力
使非自由体在某一方向不能自由运动的限制装置称为约束。
由约束引起的沿约束方向阻止物体运动的力称为约束反力。由于约束反力的作用是阻止物体运动,因此约束反力的方向总是与被约束物体的运动方向或运动趋势的方向相反。
14.约束反力的产生条件
约束反力的产生条件,是由物体的运动趋势和约束性能来决定的。使物体运动或有运动趋势的力称为主动力。物体在主动力作用下如果没有相对于某个约束的运动趋势,则该约束反力就不会产生。
约束反力是在主动力影响下产生的,主动力的大小是已知或可测定的,而约束反力的大小通常是未知的。在静力学问题中,主动力和约束反力组成平衡力系,可利用平衡条件求约束反力。
15 画物体的受力图的步骤
画单个物体的受力图,首先需明确研究对象,弄清研究对象受到哪些约束作用,然后解除研究对象上的全部约束,而单独画出该研究对象的简图,在简图上画上已知的主动力及根据约束类型在解除约束处画上相应的约束反力。必须注意,约束反力的方向一定要和被解除的约束的类型相对应,不可根据主动力的方向来简单推断。
16.画受力图时应注意的问题
通过以上数例,可将画受力图时应注意的问题归纳如下: (1)不要漏画力
必须搞清楚所研究的对象(受力物体)与周围哪些物体(施力物体)相接触。在接触点处 均可能有约束反力。 (2)不要多画力
力是物体间的相互作用。对受力图上的每一个力,都应能明确指出它是由哪一个施力 物体施加的。如某一个力指不出施力物体,该力则为多画的力。因此,在画受力图时,一定要分清施力物体与受力物体,切不可将脱离体施加给其他物体的力画在该脱离体的受力图上。 (3)不要画错约束反力的方向
约束反力的方向必须严格按照约束的性质确定,不能凭主观感觉猜测。
(4) 注意作用与反作用关系
在两物体相互联结处,注意两物体之间作用力与反作用力的等值、反向、共线关系。
(5)注意区分内力和外力
所谓内力,是指系统内部各物体之间的相互作用力。所谓外力,是指系统以外的其他物体对系统的作用力。内力和外力的区分不是绝对的,而是相对的。当所取的脱离体不同时,原来是内力的力可能转化为外力。反之亦然。
注意:系统的内力总是成对出现的,且各对内力均保持等值、反向、共线的关系。在研究物体系统的外效应时,每对内力的外效应刚好相互抵消,因此画受力图时只画外力而不画内力。
(6) 约束反力的一致性
同一个约束反力,在各受力图中的表示、假设指向都必须一致。 17.物体系统、受力图
在工程中常常将若干构件通过某种连接方式组成机构或结构,用以传递运动或承受荷载。这些机构或结构统称为物体系统。
画物体系统的受力图的方法,基本上与画单个物体受力图的方法相同,只是研究对象可能是整个物体系统或系统的某一部分或某一物体。画整体的受力图时,只须把整体作为单个物体一样对待;画系统的某一部分或某一物体的受力图时,要注意被拆开的相互联系处,有相应的约束反力,且约束反力是相互间的作用,必须遵循作用与反作用定理。
18. 按照两接触物体之间相对运动的形式,摩擦可分为哪两种? 按照两接触物体之间相对运动的形式,摩擦可分为滑动摩擦和滚动摩擦两种。当两个接触物体沿接触面有相对滑动或有相对滑动的趋势时,在接触处就彼此阻碍滑动,或阻碍滑动的发生,这种现象称为滑动摩擦。当两物体间有相对滚动或相对滚动的趋势时,物体间会产生阻碍滚动的现象,称为滚动摩擦。
19.滑动摩擦力及其种类
当产生滑动摩擦时,在两物体接触面间阻碍物体相对滑动的力,称为滑动摩擦力,简称摩擦力。有两种滑动摩擦力:静滑动摩擦力和动滑动摩擦力。
20.静摩擦力的性质、静滑动摩擦定律 静摩擦力有如下性质:
静摩擦力的方向与物体相对滑动的趋向相反;静摩擦力的大小是随主动力的变化而变化,变化范围在零与最大静摩擦力之间。即
0?F?Fma x (1-18)
静滑动摩擦定律:最大静摩擦力与两物体接触面积的大小无关;而与两物体间的正压力(或法向反力)成正比,即
Fmax?fs?FN (1-19)
这就是静滑动摩擦定律(又称库仑定律)。式中fs是比例常数,称为静滑动摩擦因数,简称静摩擦因数。这个因数的大小与相互接触物体的材料、表面粗糙度、湿度、温度等有关。其数值由实验测定。 21.动滑动摩擦定律。
动滑动摩擦定律:
动摩擦力的大小与两物体间的正压力(或法向反力)成正比。即
F/?f?FN (1-20)
式中f称为动滑动摩擦因数,简称动摩擦因数,它的值与接触物体的材料及接触面情况有关,在速度不大时,可认为与运动速度无关。f略小于fs,在工程计算中,通常近似地认为f与fs相同。
22.摩擦角?全反力、摩擦角与什么因素有关
答:在考虑摩擦力的情况下,支承面对物体的反力包括法向反力FN和静摩擦力F两个力,这两个力的合力FR称为全反力。全反力与支承面的法线的夹角为φ(图1-2a)。静摩擦力F达到最大值Fmax,角φ也增至最大值φm。(图1-51b),这个φm称为摩擦角。
图1-2
全反力FR与支承面的法线的夹角φ随着摩擦力F而变化,因为摩擦力只能在一定范围内变化,所以φ值变化也有一定范围,即
0????m (1-21)
Fmax有关,因而也与静摩擦因数fs有关,它们之间的关
上式表示物体处于静止状态时,全反力作用线可能的范围。 摩擦角φ系是
m的大小与
tan??Fmaxfs?FN??fs (1-22) FNFN
即摩擦角的正切等于静摩擦因数。摩擦角和静摩擦因数都是表示材料的摩擦性质的物理量。
(二)、静力学解题方法研究及专题探究 (1)、正交分解法
正交分解法解答物理问题的优势在于:① 解题过程的程序化,易于学生理解和接受;
②学生一旦掌握这种方法,就可以按部就班的从“定物体,分析力→建坐标,分解力→找规律,列方程→求结果,反思题”这样一个模式化的解题过程进行下去,总可以将题目解答出来。③这种方法适用于物体受力个数较多且有些力不在互相垂直的两个方向上,而其它方法对力的个数较多的情况应用起来反而更复杂。有时对力的分布又有比较特殊的要求。而正交分解法几乎没有什么限制;不论力的个数,也不论力的分布是否具有对称性或临界特点,也不论被研究的是一个物体还是物体系;④正交分解法的解题形式规范,整齐划一,通常都在x轴和y轴两个方向上列出方程,必要时加一个辅助方程,可以求解两到三个未知量;⑤学生一旦掌握了正交分解法,就可以在大脑中形成一种固有的解题模式,所以,在面临具体问题时,很快自动生成解题思路。⑥正交分解法是一种常规方法,人们在解题时,一般情况下常规方法最容易进入解题者的短时记忆,不论是平时考试还是高考,常规方法往往是最直接是最效的方法。因此,对正交分解法题题应该让学生达到程序化、自动化、标准化的熟练境界。 例1、如图所示,用一个斜向上的拉力F作用在箱子上,使箱子在水平地面上匀速运动。已知箱子质量为m ,F与水平方向的夹角为θ,箱子与地面的动摩擦因数为μ。求拉力F的大小。
解:箱子受四个力:mg、FN、f、F作用,如图所示。建立直角坐标系如图,将拉力F分解为:Fx = Fcosθ , Fy= F sinθ. 根据共点平衡条件得:
x轴上: Fcosθ = f ?? ①