建筑:61 % 23 %
家具:建筑=11 % : 23 %大约等于1 : 2 。注意这是2006 年4 月份的比例。
建筑类2006 年所占比例为:l * ( l + 27.3 % ) / [ 1 * ( l + 27.3 % ) + 2 * ( l + 60.8 % ) = 1 . 27 / ( 1.27 + 3.2 ) = 1.27 / 4.5 = 28 %。和A 最接近。 124 .下列说法正确的是:
1 . 2006 年1-5 月份北京市每月平均社会消费品零售额比去年同期增长12.5 %
11 . 2006 年5 月份家具类、建筑及装潢材料类、家电类限额以上批发零售贸易企业零售额的增长率相比较,建筑及装潢材料类增长最快
1ll . 2005 年,北京市机动车类销售量约为4.36 万辆
A .仅1 B .仅11 C . I 和11 D . II 和111 答案:C 分析:1 一5 月份全市累计实现社会消费品零售额1312 .7 亿元,比去年同期增长12.5 %。累计增长A/B=同比增长(A/5 ) / ( B / 5 )。I 正确,11 正确,文中直接找答案。5.4 / ( 1 + 23.9 % )约等于4.36 。
125 .下列说法肯定正确的是:
A . 2006 年前5 个月中,5 月份的社会消费品零售额最高 B . 2006 年5 月,几类商品的零售额都比前4 个月高
C . 2006 年5 月,限额以上批发零售贸易企业零售额比前4 个月都高
D .至少存在一类商品,其2006 年前5 个月的零售额同比增长不高于12.5 % 答案:D 分析:1 一5 月份全市累计实现社会消费品零售额1312.7 亿元,比去年同期增长12.5 % ,而5 月份各类零售增长率都超过了12.5 %。因此可以肯定,至少存在一类商品,其2006 年前5 个月的零售额同比增长不高于12.5 %。 牛吃草问题
牛吃草问题可能很多人会做,列了好几个方程,算来算去,能不能算出还不知道,时间浪费不少。牛吃草问题可以衍生出相关题目,己经考过的像水池放水,蜡烛燃烧等题都可以用到牛吃草的方法去做题。通过本节的学习,以后遇到相关题目20 秒即可做出答案。大家要好好的掌握,牢记下面的一个公式。
1.牧场上有一片均匀生长的牧草,可供27 头牛吃6 天,或供23 头牛吃9 天。那么它可供21 头牛吃几天?
常规的做法,很多辅导班培训的方法也是如此: 假设X 为每天长草量,Y 为草场草量 ( 27 一X ) *6 = Y ( 23 一X ) *9 = Y X = 15 , Y = 72
( 21 一15 ) * 天数=72 得天数为12 天。
从列方程到计算,总时间超出1 分钟了。 简便方法:
( 27 一X ) *6 = ( 23 一X ) *9 得出X = 15
( 21 一15 )*天数=( 27 一X ) *6 得出天数为12 。 此方程要牢牢记住:
草原原有草量=(牛数一每天长草量)*天数
( 27 一x ) *6 = ( 23 一x )*9 ,遇到类似的题目,去接套用。 详细分析:
解:设每天新增加草量恰可供x 头牛吃一天,21 牛可吃Y 天(后面所有x 均为此意) 可供27 头牛吃6 天,列式:( 27 一x ) *6 注:( 27 一x )头牛6 天把草场吃完 可供23 头牛吃9 天,列式:( 23 一x ) *9 注:( 23 一X )头牛9 天把草场吃完 可供21 头牛吃几天?列式:( 21 一X ) *Y 注:仅(2l 一X )头牛Y 天把草场吃 ( 27 一X ) *6 = ( 23 一X ) *9 一(21 一X ) *Y ( 27 一X ) *6 =(23 一X ) *9 ( 23 一X ) *9 = ( 21 一X ) *Y
解这个方程组,得x =15 (头) Y = 12 (天)
2 .牧场上有一片青草,草每天以均匀的速度生长,这些草供给20 头牛吃,可以吃20 天;供给100头羊吃,可以吃12 天。如果每头牛每天的吃草量相当于4 只羊一天的吃草量,那么20 头牛,100 只羊同时吃这片草,可以吃几天?A . 2 B . 4 ( 8 / 13 ) C . 6 ( 7 / 12 ) D . 8
解析:
看题直接套用数字,( 20 一x ) *20 =(25 一X ) *12 ,得X = 100 / 8 ,
( 20 + 25 一X ) * 天数=( 20 一X ) * 20
得出x = 60 / 13 。(此题要看清题目,是牛和羊) 2 .现欲将一池塘水全部抽干,但同时有水匀速流入池塘。若用8 台抽水机10 天可以抽干;用6 台抽水机20 天能抽干。问:若要5天抽干水,需多少台同样的抽水机来抽水? 解析:( 8 一x ) 10 =(6 一x ) *20 ,得出x ,在代入
3 .一只船发现漏水时,已经进了一些水,水匀速进入船内。如果10 人淘水,3 小时淘完:如5 人淘水8 小时淘完。如果要求2 小时淘完,要安排多少人淘水?
11
解析:( 10 一X ) * 3 = ( 5 一x ) * 8 ,得出X 在代入
4 .有一片牧场,24 头牛6 天可以将草吃完;21 头牛8 天可以吃完,要使牧草永远吃不完,至多可以放牧几头牛? A . 8 B . 10 C . 12 D . 14 解析:
( 24 一x )* 6 = ( 21 一x )* 8 ,得出x = 12
公式中X 是每天长出来的草刚好被吃完,所以要永远吃不完,刚好是12 头。 7 .自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.己知男孩每分钟走20 级梯级,女孩每分钟走15级梯级,结果男孩用了5 分钟到达楼上,女孩用了6 分钟到达楼上.问:该扶梯共有多少级?
解析:总楼梯数即总草量,
列式(20 一X )* 5 = ( 15 一X)* 6 ,得X =-10 (级) 将X =-10 代入,( 20 一X )* 5 得150 级楼梯
8 .某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4 个检票口需30 分钟,同时开5 个检票口需20 分钟.如果同时打开7 个检票口,那么需多少分钟?
解析:和牛吃草一样的道理。 9 .有三块草地,面积分别为5 , 6 和8 公顷.草地上的草一样厚,而且长得一样快,第一块草地可供11 头牛吃10 天,第二块草地可供12 头牛吃14 天.问:第三块草地可供19 头牛吃多少天?A . 6 B . 7 C . 8 D . 9
解析:此题比前面牛吃草的题目相对难点。
现在是三块面积不同的草地.为了解决这个问题,需要将三块草地的面积统一起来.(这是面积不同时得解题关键)
求(5 , 6 , 8 )的最小公倍数,最小公倍数为120 1 、因为5 公顷草地可供11 头牛吃10 天,120 /5 =24 ,所以120 公顷草地可供ll*24 = 264 (头)牛吃10 天. 2 、因为6 公顷草地可供12 头牛吃14 天,120 /6 =20 ,所以120 公顷草地可供12*20 = 240 (头)牛吃14 天.
3 、120 /8 = 15 ,问题变为:120 公顷草地可供19*15 = 285 (头)牛吃几天? 这样一来,就可以转化为简单的牛吃草,同理可得:
( 264 一X ) * 10 = ( 240 一X )*14 得X = 180 (头) 算出X ,在代入:( 285 一180 ) *y = ( 264 一180 )*10 Y = 8 (天)
牛吃草的难题只要做下转化,即可轻松做出。牛吃草,及水池放水,排队等等都可以归类为牛吃草的解法。培训班所讲的方法就是列方程,方法很一般。 希望大家要灵活应用此方法,做题时快速套用公式 相关练习题:
1.一片牧草,可供16 头牛吃20 天,也可以供80 只羊吃12 天,如果每头牛每天吃草量等于每天4 只羊的吃草量,那么10 头牛与60 只羊一起吃这一片草,几天可以吃完? A . 1 0 B . 8 C . 6 D . 4 2 .两个孩子逆着自动扶梯的方向行走。20 秒内男孩走27 级,女孩走了24 级,按此速度男孩2 分钟到达另一端,而女孩需要3 分钟才能到达。则该扶梯静止时共有多少级可以看见?( ) A.54 B.48 C.42 D.36 3 . 22 头牛吃33 公亩牧场的草,54 天可以吃尽,17 头牛吃同样牧场28 公亩的草,84 天可以吃尽。请问几头牛吃同样牧场40 公亩的草,24 天吃尽?( ) A.50 B.46 C.38 D.35
4 .经测算,地球上的资源可供100 亿人生活100 年或者是可供80 亿人生活300 年,假设地球每年新生长的资源是一定的,为了使资源不致减少,地球上最多生活多少人?
5 .某车站在检票前若干分钟就开始排队,每分钟来的旅客是一样多(人数),若同时打开4 个检票口,从开始检票到等候检票的队伍消失,需要30 分钟,同时开5 个检票口的话,需要20 分钟。如果同时打开7 个检票口的话,那么需要多少分钟?
6 .甲乙丙三辆车同时从同一地点出发,沿同一公路追赶前面的一骑自行车的人,这三辆车分别用3 小时、5 小时、6 小时追上骑自行车的人,现在知道甲车每小时行了24 千米,乙车每小时行20 千米,你能知道丙车每小时多少千米? 7 .有一牧场氏满牧草,每天牧场匀速生长。这个牧场可供17 头牛吃30 天,可供19 头牛吃24 天。现有若干头牛吃草,6 天后,4 头牛死亡,余下的牛吃了2 天将草吃完,求原有牛的头数。
8 .由于天气逐渐冷起来,牧场上的草不仅不增加,反而以固定的速度在减少。已知某块草地上的草可供20 头牛吃5 天或可供15 头牛吃6 天,照此计算可供多少头牛吃10 天?
9 .武钢的煤场,可储存全厂45 天的用煤量。当煤场无煤时,如果用2 辆卡车去运,则除了供应全厂用煤外,5 天可将煤场储满;如果用4 辆小卡车去运,那么9 天可将煤场储满。如果用2 辆大卡车和4 辆小卡车同时去运,只需几天就能将煤厂储满?(假设全厂每天用煤量相等)
经验总结:行测、申论复习与考试过程中,阅读量都非常的大,而且做题需要效率,如果不会提高效率,一切白搭。个人觉得首先要学会快速阅读,一般人每分钟才看200字左右,我们要学会一眼尽量多看几个字,甚至是以行来计算,把我们的速读提高,然后再提高阅读量,这是申论的基础。《行测》的各种试题都是考察学生的思维,大家平时还要多
12
刻意的训练自己的思维。学会快速阅读,不仅在复习过程中效率倍增,在考试过程中更能够节省大量的时间,提高效率,而且,在我们一眼多看几个字的时候,还能够高度的集中我们的思维,大大的利于归纳总结,学会后,更有利于《行测》的复习、考试,特别是在学习速读的同事,还能够学习思维导图,对于《行测》的各种试题都能得心应手的应付。我去年有幸学习了快速阅读,至今阅读速度已经超过5000字/分钟,学习效率自然不用说了。我读大学的成绩是很差,考公务员的时候我妈说我只是碰运气,结果最后成绩出来了居然考了岗位第二,对自己的成绩非常满意,速读记忆是我成功最大的功劳。找了半天,终于给大家找到了下载的地址,怕有的童鞋麻烦,这里直接给做了个超链接,先按住键盘最左下角的“ctrl”按键不要放开,然后鼠标点击此行文字就可以下载了。认真练习,马上就能够看到效果了!此段是纯粹个人经验分享,可能在多个地方看见,大家读过的就不用再读了,只是希望能和更多的童鞋分享。最后记得,多做多练一定是王道!
时针分针与路程问题 一、基本知识点: 、基本公式:s=v*t 2 、相遇追及问题:
相遇距离s =(vl + v2 )*相遇时间t 追及距离S = ( vl - v2 ) * 追及时间t 3 、环形运动问题:
环形周长s =(v1 + v2 ) * 相向运动的两人两次相遇的时间间隔t 环形周长s = ( v1 - v2 ) * 同向运动的两人两次相遇的时间间隔t 4 、流水行船问题:
顺流路程=顺流速度*顺流时间=(船速+水速)* 顺流时间 逆流路程=逆流速度*逆流时间=(船速一水速)* 逆流时间 5 、电梯运动问题:
能看到的电梯级数=(人速十电梯速度)* 沿电梯运动方向运动所需时间 能看到的电梯级数=(人速一电梯速度)* 逆电梯运动方向运动所需时间 答案与解析
1 .求在8 点几分时,时针和分针重合在一起?
A.8 点43 ( 7 / 11 )分 B.8 点43 分 C.8点43 ( 5/1l )分 D.8 点53 ( 7 / 11 )分
解析:时针的问题和路程问题解题思路是一致的,考虑8 点时、分针落后时针40 个格(每分为一格),而时针速度为每分1 / 12 格,分针速度每分一格,有追及问题可得:40 /(1 一1 / 12 ) = 43 ( 7 / 11 )
2 .时钟的时针和分针在6 点钟恰好反向成一条直线,问下一次反向成一条直线是什么时间?(准确到秒)
A7 点5 分27 秒 B7 点5 分28 秒 C7 点5 分29 秒 D7 点5 分30 秒 解析:在7 点的时候、时针与分针之间的夹角是210 度,分针每分钟6 度,时针每分钟走0 . 5 度。假设在经过N 分钟时针和分针成一条直线。这样就把问题转换为追击问题。 210 + O.5N - 6N = 180
得N=5 ( 5 / 11 )约等于5 分27 秒
3 .某解放军队伍长450 米,以每秒1 . 5 米的速度前进,一通讯员以每秒3 米的速度从排尾到排头并立即返回排尾,整个过程通讯员走了多少米? A . 950 B . 1000 C . 1100 D . 1200 解析:
从排尾到排头用时为:450 /(3 一1.5 )=300 (秒),从排头到排尾用的时间是400 / ( 3 + 1.5 ) = 100 秒,一共用了400 秒,3 * 400 = 1200 。解决此类题目,一定要找准切入点,才能解决。 秒杀实战方法:答案应该是3 的整数倍,因此直接选D 。
3 .某解放军队伍长450 米,以每秒1 . 5 米的速度前进,一通讯员以每秒3 米的速度从排尾到排头并立即返回排尾,那么整个过程队伍前进了多少米?A . 550 B . 600 C . 650 D . 800 解析:
从排尾到排头用时为:450 /(3 一1.5 )= 300 (秒),从排头回排尾用的时间是450 / ( 1.5 + 3 ) = 100 ,一共用了400 秒。则:1.5 * 400 = 600 米 实战方法:只有600 是1 . 5 的整数倍,因此选B
5 .某解放军队伍长450 米,以每秒1 . 5 米的速度前进,一通讯员以每秒3 米的速度从排尾到排头并立即返回排尾,那么整个过程通讯员前进了多少米? A . 550 B . 600 C . 650 D . 800
解析:秒杀实战方法:只有600 是3 的倍数,因此选B 。
6 .铁路旁的一条平行小路上,有一行人与一骑车人同进向南行进,行人速度为每小时3.6 千米,骑车人速度为每小时10.8 千米。这时,有一列火车从他们背后开过来,火车通过行人用22 秒钟,通过骑车人用26 秒钟。这列火车的车身总长是()米。 A286 B . 300 C . 400 D.268
解析:设火车速度是每秒X 米。行人速度是每秒3.6 * 1000 / 60 * 60 = 1 (米),骑车人速度是每秒1.8 * 1000 / 60 * 60 = 3 (米)根据己知条件列方程:( x 一1 ) * 22 = ( x 一3 ) *
13
26 ,解得:X =14 (米),车长=( 14 - l ) * 22 =286 (米)这是常规方法 秒杀实战方法:假设火车速度为每秒X 米,火车长度为S 。S = ( X 一l ) * 12 =(x 一3 ) * 26 .则s 应该是22 的整数倍,也应该是26 的整数倍。A 符合。
7 一列客车通过250 米长的隧道用25 秒,通过210 米长的隧道用23 秒。己知在客车的前方有一列行驶方向与它相同的货车,车身长为320 米,速度每秒17 米。列车与华车从相遇到离开所用的时间为()。
A . 160 秒B . 200 秒C . 400 秒D . 190 秒
解析:客车速度是每秒(250 一210 ) / ( 25 一23 ) = 20 米,车身长=20 * 23 - 210 = 250 米 客车与火车从相遇到离开的时间是(250 + 320 ) / ( 20 一17 ) = 190 (秒)
8 .东、西两城相距75 千米。小明从东向西走,每小时走6.5 千米;小强从西向东走,每小时走6 千米;小辉骑自行车从东向西,每小时骑行15 千米。3 人同时动身,途中小辉遇见小强又折回向东骑,这样往返,直到3 人在途中相遇为止。问:小辉共走了()千米。A . 80 B . 60 C 70 D . 90
解析:3 人相遇时间即明与强相遇时间,为75 / ( 6.5 + 6 ) = 6 小时,小辉骑了15 * 6 = 90 千米
9 .姐弟俩出游,弟弟先走一步,每分钟走40 米,走80 米后姐姐去追他。姐姐每分钟走60 米,姐姐带的小狗每分钟跑150 米。小狗追上弟弟又转去找姐姐,碰上姐姐又转去追弟弟,这样跑来跑去,直到姐弟相遇小狗才停下来。问小狗共跑了多少米?( ) A . 600 B . 800 C . 1200D . 1600
解析:由于小狗的运动规律不规则,但速度保持不变,故求出小狗跑的总时间即可。由于姐姐和小狗同时出发,同时终止,小狗跑的时间也就是姐姐追弟弟的时间。 这个时间为80 /(60 一40 ) = 4 分钟 小狗跑了150x4 = 600 米
10 .小明放学后,沿某路公共骑车路线以不变的速度不行回家,该路公共汽车也以不变速度不停地运行。每隔30 分钟就有辆公共骑车从后面超过他,每隔20 分钟就遇到迎面开来的一辆公共汽车。问:该路公共汽车每隔多少分钟发一次车?( ) A . 20 B . 24 C . 25 D . 3O 解析:设两辆车间距为S 。 有S =(V 车+V 人)* 20 S = ( V 车一V 人)* 30 求得V 车=5V 人
故发车间隔为:T = S/v车=24 分钟
11 .商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2 个梯级,女孩每2 秒向上走3 个梯级。结果男孩用40 秒钟到达,女孩用50 秒钟到达。则当该扶梯静止时,可看到的扶梯级有: A . 80 级 B . 100 级C . 120 级D . 140 级 解析;总路程为“扶梯静止时可看到的扶梯级”,速度为“男孩或女孩每个单位向上运动的级数”,如果设电梯匀速时的速度为X ,则可列方程 如下, ( X + 2 ) *40 =(X + 3 / 2 ) *50
解得X=0.5 也即扶梯静止时可看到的扶梯级数=(2 + 0.5 ) * 40 = 100
11 .甲、乙两人从400 米的环形跑道的一点A 背向同时出发,8 分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0 . 1 米,那么,两人第三次相遇的地点与A 点沿跑道上的最短距离是 A . 166 米B . 176 米C . 224 米D . 234 米
解析,此题为典型的速度和问题,为方便理解可设甲的速度为X 米/分,乙的速度为Y 米/分,则依题意可列方程 8X + 8Y = 400*3
X - Y =6 (速度差0 . 1 米砂=6 米/分) 从而解得X = 78, Y = 72
由Y = 72 ,可知,8 分钟乙跑了576 米,显然此题距起点的最短距离为176 米。
12 .甲乙两列火车速度比是5 : 4 ,乙车先出发从B 站开往A 站,当行到离B 站72 千米的地方时,甲车从A 站出发开往B 站,两列火车相遇的地方离AB 两站距离之比是3 : 4 ,那么两站之间的距离为多少千米?
A 2.16 B . 315 C . 480 D . 540
解析:方法1 :利用时间,速度与路程的关系巧解。T=s / v ,相遇的时候,甲乙两车所行驶的路程之比是3 : 4 ,由于甲乙两列火车速度比是5 : 4 ,为了方便计算,不妨假设相遇的时候,甲乙两车所行驶的路程之比是3 : 4 =15:20 ,这样可以求出甲乙行驶的时间之比是3 : 5 ,也就是说乙多走了2 份时间,乙在2 份时间内行驶了72 小时,进而可以求出乙在5 份时间内行驶了180 千米。180/4*( 3 + 4 )=315 千米
秒杀实战方法:两列火车相遇的地方离AB 两站的距离比是3 : 4 ,那么AB 两站之间的距离应该是3 + 4 = 7 的整数倍。只有b 满足条件。
13 .有两列火车相向而行,甲列火车每小时行72 千米,乙列火车每小时行54 千米,两车错车时,甲列车上的一位乘客发现,从乙列车车头经过他的车窗时开始,到该车车尾经过他的车窗共用了11 秒,乙列车的车长是多少米? A . 320 B . 340 C 360 D 385
解析:乙车的车长位两列火车在11 秒内所走的路程之和,72 千米/小时=20 米/秒,54 千米/小时=15米/秒,所以乙车车长为:( 20 + l5 ) *ll = 385 米
14
实战方法:到该车车尾经过他的车窗共用了11 秒,答案是11 的倍数,385 符合。
14 .甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要10 小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12 千米,问东、西两城相距多少千米?
A . 45 B 60 C . 80 D . 100 解析:
方法1 :假设甲乙的工作效率分别是1 / 10 , 1/15 ,两车合扫,扫完全程需要多少时间,是1 / ( 1 / 10 + l / 15 )=6 小时。甲每小时比乙多扫1 / 10 一1 / 15 = l / 30 ,扫完全程甲比乙多扫1/30*6 = l/5,相遇时甲车比乙车多清扫12 千米,因此全程是12/(l / 5) =60 千米。 方法2 :甲乙两车单独清扫分别需10 小时、15小时,10 和15的最小公倍数是30 ,为了方便计算,假设全程是30a 。甲车每小时扫3a ,乙车每小时扫2a ,甲车每小时比乙车多扫a 。
两车合作扫完全程需要30a /(2a +3a)=6 小时,甲车比乙车多扫6a , 6a = l2 , a = 2 。全程30a =180千米。方法2 比方祛1 更简单。
方法1 和2 是一般的解题方法,也是培训班的解题方法。在考试中,采用这样的方法是不能取得高分的,同时时间上也会很紧张,出现来不及做的情况。通过秒杀,为其他题目留出些时间,是行测获得高分方法。
实战方法:甲车单独清扫需要10 小时,乙车单独清扫需要15 小时,说明全长应该是10 和15的整数倍,只有B 符合。
15.甲、乙两清洁车执行A 、B 两地间的公路清扫任务,甲、乙两车单独清扫分别需2 小时、3 小时,两车同时从A 、B 两地相向开出,相遇时甲车比乙车多清扫6 千米,A 、B 两地共有多少千米? A . 20 B . 30 C . 40 D . 60 解析:
常规方法和前面一样
秒杀:甲、乙两车单独清扫分别需2 小时,3 小时,说明全长是3 的倍数。只有B 符合。 页码及相关问题 ( 1 )答案与解析
1 .在1-5000 页中,出现过多少次数字3 ?含3 的页数有是多少?
解析:对于3 出现了多少次这种题型,大家都不陌生,规律是:在页码1-99 中,l 、2 、3 、4 、5 、6 、7 、8 、9 均会出现20 次(0 不符合这一规律)。在页码100 -999 中,l 、2 、3 、4 、5 、6 、7 、8 、9 均会出现20 *9+100 次。
那么,“含某个数字的页数有多少”这类题该怎么解呢?
首先,在页码1-99 中,数字3 出现了20 次,即有19 个含3 的页码( 33 页要去掉一次);在页码100-999 中,分两种情况考虑:( 1 )首位数字是3 ,那么,后面两位就不用管了,一共有含3 的页码100 页;( 2 )首位数字不是3 ,那么必须考虑后两位数字含3 ,而前面知道,1-99 中,有19 个含3 的页码,由于首位数字这时有l 、2 、4 、5 、6 、7 、8 、9 这么8 种可能性,所以应该是19 * 8 个含3 的页码。在这里统计一下,在1-999 中,含3 的页码一共19 + 19 * 8 + 100 = 19 * 9 + 100 页,再引申到1000-5000 ,也分两种情况:( l ) 千位是3 ,则有1000 页:( 2 )千位不是3 ,则只可能是l 、2 、4 ,只考虑后3 位,有(19*9+l00)*3 个含3 的页码。 所以,合计是:19 * 9 + 100 + ( 19 * 9 + 100 ) * 3 + 1000 =2084 页 2 . 99999 中含有多少个带9 的页面?
答案是40951 ,排列组合学的不是特别好的同学可以牢记公式: [ (19*9+100)*9+1000]*9+10000=40951
规律很简单:19*9+100 ,代表l-999 里含l 、2 、3 、4 、5 、6 、7 、8 、9 的页码数; (19*9+100)*9+1000,代表1-9999 里含l 、2 、3 、4 、5 、6 、7 、8 、9 的页码数; (l9*9+100)*9+1000,代表l-99999 里含l 、2 、3 、4 、5 、6 、7 、8 、9 的页码数。 2 位数是19 页,然后每多一位数就乘以9 ,再加上10 的N 次方,N = 位数减1 ,可以记住当公式用。
3 .王先生在编一本书,其页数需要用6869 个字,问这本书具体是多少页? A . 1 999 B . 9999 C . 1994 D . 1995
解析:这个题目是计算有多少页。首先要理解题目,这里的字是指数字个数,比如111这个页码就有3 个数字。
我们通常有这样一种方法。 方法一:
l~9 是只有9 个数字,
10~99 是2*90 = 180 个数字 100~999 是3*900 = 2700 个数字 那么我们看剩下的是多少 6869-9-180-2700 = 3980
剩下3980 个数字都是4 位数的个数 则四位数有3980 / 4 = 995 个 则这本书是1000+995-1 = 1994 页 为什么减去1
是因为四位数是从1000 开始算的!
15