∴∠ACE=∠ACB+∠DCE=60°+60°=120°,故B正确;
∵△ABC和△CDE都是等边三角形,
∴AC=BC,EC=DC,∠ACD=∠BCE=60°.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE.故D正确;
∵△ABD与△EBD不全等,
∴AB≠BE.
故选:B.
【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,熟记等边三角形的性质以及全等三角形的判定方法是解题的关键.
8.如图,在△ABC中,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于点E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系为()
A.EF>BE+CF B.EF=BE+CF C.EF<BE+CF D.不能确定
【考点】等腰三角形的判定与性质;平行线的性质.
【分析】由平行线的性质和角平分线的定义可得∠EBD=∠EDB,则ED=BE,同理可得
DF=FC,则EF=BE+CF,可得答案.
【解答】解:∵EF∥BC,
∴∠EDB=∠DBC,
∵BD平分∠ABC,
∴∠EBD=∠DBC,
∴∠EDB=∠EBD,
∴ED=BE,
同理DF=FC,
∴ED+DF=BE+FC,
即EF=BE+FC,
故选B.
【点评】本题主要考查等腰三角形的判定,利用平行线的性质及角平分线的定义得到ED=BE 和DF=FC是解题的关键
二、填空题:(每题2分,计16分)
9.若分式的值为0,则x的值等于1.