中考一次函数压轴题集锦及答案解析(10)

2019-07-30 12:56

考点:一次函数综合题。 专题:综合题。 分析:(1)结合图形可知点B和点A在坐标,故设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;

(2)已知l1的解析式,令y=0求出x的值即可得出点D在坐标;联立两直线方程组,求出交点C的坐标,进而可求出S△ADC;

(3)△ADP与△ADC底边都是AD,面积相等所以高相等,ADC高就是C到AD的距离;

(4)存在;根据平行四边形的性质,可知一定存在4个这样的点,规律为H、C坐标之和等于A、D坐标之和,设出代入即可得出H的坐标. 解答:解:(1)设直线l2的解析表达式为y=kx+b, 由图象知:x=4,y=0; x=3,

∴,

∴,

∴直线l2的解析表达式为

(2)由y=﹣3x+3,令y=0,得﹣3x+3=0, ∴x=1, ∴D(1,0); 由

解得 ,

∴C(2,﹣3), ∵AD=3,

∴S△ADC=×3×|﹣3|=;

(3)△ADP与△ADC底边都是AD,面积相等所以高相等, ADC高就是C到AD的距离,即C纵坐标的绝对值=|﹣3|=3, 则P到AB距离=3,

∴P纵坐标的绝对值=3,点P不是点C, ∴点P纵坐标是3, ∵y=1.5x﹣6,y=3,

∴1.5x﹣6=3 x=6,

所以点P的坐标为(6,3);

(4)存在; (3,3)(5,﹣3)(﹣1,﹣3)

点评:本题考查的是一次函数的性质,三角形面积的计算以及平行四边形的性质等等有关知识,有一定的综合性,难度中等偏上.

26.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.

(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式; (2)当P运动到什么位置,△OPA的面积为

,求出此时点P的坐标;

(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.

考点:一次函数综合题;解二元一次方程组;待定系数法求一次函数解析式;三角形的面积;全等三角形的判定。 专题:计算题;动点型。 分析:(1)求出P的坐标,当P在第一、二象限时,根据三角形的面积公式求出面积即可;当P在第三象限时,根据三角形的面积公式求出解析式即可; (2)把s的值代入解析式,求出即可;

(3)根据全等求出OC、OD的值,如图①所示,求出C、D的坐标,设直线CD的解析式是y=kx+b,把C(﹣6,0),D(0,﹣8)代入,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可;如图②所示,求出C、D的坐标,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可. 解答:解:(1)∵P(x,y)代入y=x+6得:y=x+6, ∴P(x,x+6),

当P在第一、二象限时,△OPA的面积是s=OA×y=×|﹣6|×(x+6)=x+18(x>﹣8) 当P在第三象限时,△OPA的面积是s=OA×(﹣y)=﹣x﹣18(x<﹣8)

答:在点P运动过程中,△OPA的面积s与x的函数关系式是s=x+18(x>﹣8)或s=﹣x﹣18(x<﹣8).

解:(2)把s=代入得:=+18或=﹣x﹣18,

解得:x=﹣6.5或x=﹣6(舍去), x=﹣6.5时,y=,

∴P点的坐标是(﹣6.5,).

(3)解:假设存在P点,使△COD≌△FOE,①如图所示:P的坐标是(﹣

);

②如图所示:P的坐标是(

存在P点,使△COD≌△FOE,P的坐标是(﹣,)或(,).

点评:本题综合考查了三角形的面积,解二元一次方程组,全等三角形的性质和判定,用待定系数法求一次函数的解析式等知识点,此题综合性比较强,用的数学思想是分类讨论思想和数形结合思想,难度较大,对学生有较高的要求.

27.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C. (1)若直线AB解析式为y=﹣2x+12, ①求点C的坐标; ②求△OAC的面积.

(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.

考点:一次函数综合题。 专题:综合题;数形结合。 分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标.

②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可.

(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=3,AQ+PQ存在最小值,最小值为3. 解答:解:(1)①由题意,

(2分)

解得所以C(4,4)(3分)

②把y=0代入y=﹣2x+12得,x=6,所以A点坐标为(6,0),(4分) 所以

.(6分)

(2)存在;

由题意,在OC上截取OM=OP,连接MQ, ∵OP平分∠AOC, ∴∠AOQ=∠COQ, 又OQ=OQ,

∴△POQ≌△MOQ(SAS),(7分) ∴PQ=MQ,

∴AQ+PQ=AQ+MQ,

当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小. 即AQ+PQ存在最小值.

∵AB⊥OP,所以∠AEO=∠CEO, ∴△AEO≌△CEO(ASA),

∴OC=OA=4,

∵△OAC的面积为6,所以AM=2×6÷4=3, ∴AQ+PQ存在最小值,最小值为3.(9分)

点评:本题主要考查一次函数的综合应用,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.

28.已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动. (1)求B点坐标;

(2)设运动时间为t秒;

①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半; ②当t为何值时,四边形OAMN的面积最小,并求出最小面积;

③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.

考点:一次函数综合题;勾股定理;轴对称-最短路线问题。 专题:动点型;待定系数法。 分析:(1)由题意可以先构造矩形OABD,然后根据勾股定理进行求解; (2)是动点型的题要设好未知量:

①AM=t,ON=OC﹣CN=22﹣2t,根据四边形OAMN的面积是梯形OABC面积的一半,列出等式求出t值; ②设四边形OAMN的面积为S,用t表示出四边形OAMN的面积,根据二次函数的性质求出最值;

③由题意取N点关于y轴的对称点N′,连接MN′交AO于点P,此时PM+PN=PM+PN′=MN长度最小,表示出点M,N,N′的坐标,设直线MN′的函数关系式为y=kx+b,最后待定系数法进行求解. 解答:解:(1)作BD⊥OC于D, 则四边形OABD是矩形, ∴OD=AB=10,

∴CD=OC﹣OD=12, ∴OA=BD=

=9,

∴B(10,9);

(2)①由题意知:AM=t,ON=OC﹣CN=22﹣2t, ∵四边形OAMN的面积是梯形OABC面积的一半,


中考一次函数压轴题集锦及答案解析(10).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:(终极版)工商1108班标兵班集体材料 - 图文

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: