故通过高通滤波器后,频谱F1(? )为
F1(?)?H(j?)F(??2?1)?F(??2?1)
所以输出
y(t)?Y(?)?F(??2?1?2?1)?F(?)
即y(t)包含了f(t)的全部信息F(? ),故恢复了f(t)。
30
第5章习题解析
5-1 求下列函数的单边拉氏变换。 (1) 2?e?t (2) ?(t)?e?3t (3) e?2tcost
解 (1) F(s)????t?20(2?e)e?stdt?2s?1s?1?ss(s?1)
(2) F(s)????3t10[?(t)?e]e?stdt?1??s?3
(3) F(s)???(e?2tcost)e?stdt???1jtjtt002(e?e?)e?2?e?stdt
?1?1?2?1???s?2?js?2?j???s?2?(s?2)2?1
5-2 求下列题5-2图示各信号的拉氏变换。 f1( t )
f2( t )
1
1
t0 t
(b)
题5-2图
解 (a) 因为f1(t)??(t)??(t?t0) 而?(t)?1s,?(t?t0)?1?st0se
故
f1(t)?1s(1?e?st0)
(b) 因为f(t)?ttt[?(t)??(t?t0)]?t0t?(t)?0t?(t?t0)
0
31
又因为
tt0tt0?(t)?1s1st0122
)e?st0?(t?t0)?(?st0
故有
f2(t)??1st012?(1s?1st0)?2)e1?st0
(1?e?st0e?st0s2t0s
5-3 利用微积分性质,求题5-3所示信号的拉氏变换。
题5-3图
解 先对f( t )求导,则
f?(t)??(t)?2?(t?1)?2?(t?3)??(t?4)故对应的变换
F1(s)?1ss(1?2e??2e?3s?e?4s)
所以
F(s)?F1(s)2e?s?2e?3s?e?4ss?1?s2
5-4 用部分分式法求下列象函数的拉氏反变换。 (1) F(s)?s?1s2?5s?6 (2) F(s)?2s2?s?2s(s2?1) (3) F(s)?1s2?3s?2
32
(4) F(s)?4s(s?2)2
解 (1) F(s)?s?1s?1k1k2s2?5s?6?(s?2)(s?3)?s?2?s?3
k1?(s?2)F(s)s??2??1 k2?(s?3)F(s)s??3?2
故有
F(s)??12s?2?s?3
所以
f(t)?(?e?2t?2e?3t)?(t)
2(2) F(s)?2s?s?2s(s2?1)?ACs?Bs?s2?1
可得
A?sF(s)s?0?2
又 2s2?s?2?As2?A?Bs2?Cs 可得
B = 0,C = 1
F(s)?2s?1s2?1
所以
f(t)?(2?sint)?(t)
(3) F(s)?1112s2?3s?2?(s?1)(s?2)?ks?1?ks?2
k1?(s?1)F(s)s??1?1 k2?(s?2)F(s)s??2??1
故有
F(s)?1?1s?1?s?2
故
f(t)?(e?t?e?2t)?(t)
33
(4) F(s)?4k1k1112s(s?2)2?s?(s?2)2?ks?2
故
k1?sF(s)s?0?1 k2411?(s?2)F(s)s??2?s??2 s??2kd[(s?2)212?dsF(s)]?dds(4s)??1
s??2s??2故有
F(s)?112s??s?2?(s?2)2
所以
f(t)?(1?e?2t?2te?2t)?(t)
5-5 求下列象函数的拉氏反变换。 (1) F(s)?1?e?s (2) F(s)?1?e?ss?2
(3) F(s)?1?e?2ss(1?e?s)
解 (1) f(t)??(t)??(t?1) (2) f(t)?e?2t?(t)?e?2(t?1)?(t?1)
(3) f(t)??(t)??(t?2)??(t?1)??(t?3)??(t?2)??(t?5)??
5-6 设系统微分方程为
y??(t)?4y?(t)?3y(t)?2f?(t)?f(t)
已知y(0?)?1,y?(0?)?1,f(t)?e?2t??(t)。试用s域方法求零输入响应和零状态响应。
解 对系统方程取拉氏变换,得
s2Y(s)?sy(0?)?y?(0?)?4sY(s)?4y(0?)?3Y(s)?2sF(s)?F(s)
从而
Y(s)?sy(0?)?y?(0?)?4y(0?)2s?1s2?4s?3?s2?4s?3?F(s)
由于
34