A.
【答案】C。 B.
C.
D.
【考点】点、线、面、体。
【分析】矩形绕一边所在的直线旋转一周得到的是圆柱。故选C。
6. (2012四川绵阳3分)如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=【 】。
A.1
B.1:2 C
2 D.1
【答案】B。
【考点】旋转的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理。
【分析】如图,连接AP,
∵BP绕点B顺时针旋转90°到BP′,
∴BP=BP′,∠ABP+∠ABP′=90°。
又∵△ABC是等腰直角三角形,
∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′。
在△ABP和△CBP′中,∵ BP=BP′,∠ABP=∠CBP′,AB=BC ,∴△ABP≌△CBP′(SAS)。
∴AP=P′C。
∵P′A:P′C=1:3,∴AP=3P′A。
连接PP′,则△PBP′是等腰直角三角形。∴∠BP′P=45°,PP′= 2 PB。
∵∠AP′B=135°,∴∠AP′P=135°-45°=90°,∴△APP′是直角三角形。
设P′A=x,则AP=3x,
在
Rt△APP′中,
PP 在Rt△APP′中,PP 。
,解得PB=2x。∴P′A:PB=x:2x=1:2
。 故选B。
。