化归与转化思想在解题中的应用(4)

2021-02-21 15:00

数学专题:化归与转化思想在解题中的应用

这里求CP+PA1的最小值,而CP与PA1在直三棱柱ABC-A1B1C1的两个不同平面内,因此需利用“高维与低维的相互转化”把立体问题转化为平面问题来解决.

解:

连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,如图所示,连A1C,则A1C的长度就是所求的最小值.

通过计算可得∠A1C1B=90°又∠BC1C=45°,∠A1C1C=135°,由余弦定理可求得A1C=点评:

.

此题将几何体的侧面展开,空间问题转化成平面问题来解决,这是立体几何分支中常用的降维转化思想在解答立几问题的过程中,还常用等积变换求有关几何体的体积或点到平面的距离;常用割补转化,改变几何体的状态,由复杂几何体变为简单几何体,同时,线线、线面、面面之间的垂直或平行的互相转化,贯穿于立体几何始终;线线、点面、线面、面面之间的距离,既相互联系,又可相互转化.各种转化策略的运用,是解决立几问题的法宝.

例5

.已知函数的部分图象如图(,且).

(1)求

的值;

(2)若关于的方程(,且)有两个不等实数根;


化归与转化思想在解题中的应用(4).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:学生作业鼓励性评语

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: