2011年广东省广州市中考数学试卷及答案解析
考点:一次函数的应用。
分析:(1)根据所购买商品的价格和折扣直接计算出实际应付的钱;
(2)根据两种不同方案分别求出商品的原价与实际所付价钱的一次函数关系式,比较实际价钱,看哪一个合算再确定一个不等式,解此不等式可得所购买商品的价格范围.
解答:解:(1)120×0.95=114(元),
若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;
(2)设所付钱为y元,购买商品价格为x元,则按方案一可得到一次函数的关系式:
y=0.8x+168,
则按方案二可得到一次函数的关系式:
y=0.95x,
如果方案一更合算,那么可得到:
0.8x+168<0.95x,
解得,x>1120,
∴所购买商品的价格在1120元以上时,采用方案一更合算.
点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.
22.(2011 广州)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求a的值;
(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少有1人的上网时间在8~10
小时.
考点:频数(率)分布直方图;列表法与树状图法。
专题:应用题;图表型。
分析:(1)由于九年级(3)班有50名学生参加平均每周上网时间的调查,然后利用图中数据即可求解;
(2)根据图中数据可以知道上网时间在6~8小时的人数有3人,上网时间在8~10小时有2人,从上网时间在6~10小时的5名学生中随机选取2人共有10可能,其中至少有1人的上网时间在8~10小时有7中可能,由此即可求解.
解答:解:(1)依题意a=50﹣6﹣25﹣3﹣2=14,
∴a的值为14;
(2)∵根据图中数据可以知道上网时间在6~8小时的人数有3人,上网时间在8~10小时有2人, ∴从上网时间在6~10小时的5名学生中随机选取2人共有10可能,
其中至少有1人的上网时间在8~10小时有3×2+1=7中可能,
∴P(至少有1人的上网时间在8~10小时)=7÷10=0.7.