2012中考数学专题:几何图形证明与计算题分析(16)

2021-01-20 22:07

17.(2010福建宁德)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. A D ⑴ 求证:△AMB≌△ENB;

⑵ ①当M点在何处时,AM+CM的值最小;

②当M点在何处时,AM+BM+CM的值最小,并说明理由; ⑶ 当AM+BM+CM的最小值为3 1时,求正方形的边长. 【答案】解:⑴∵△ABE是等边三角形, ∴BA=BE,∠ABE=60°. ∵∠MBN=60°,

∴∠MBN-∠ABN=∠ABE-∠ABN. 即∠BMA=∠NBE. 又∵MB=NB,

∴△AMB≌△ENB(SAS).

⑵①当M点落在BD的中点时,AM+CM的值最小.

②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小. 理由如下: 连接MN.

由⑴知,△AMB≌△ENB, ∴AM=EN.

∵∠MBN=60°,MB=NB, ∴△BMN是等边三角形. ∴BM=MN.

∴AM+BM+CM=EN+MN+CM.

根据“两点之间线段最短”,得EN+MN+CM=EC最短

∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长. ⑶过E点作EF⊥BC交CB的延长线于F, ∴∠EBF=90°-60°=30°. 设正方形的边长为x,则BF=在Rt△EFC中, ∵EF+FC=EC, ∴(

x22

)+(x+x)=22

2

2

2

B C

A D

F

B C

x3

x,EF=. 22

1 .

2

解得,x=2(舍去负值). ∴正方形的边长为2.

16


2012中考数学专题:几何图形证明与计算题分析(16).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:内部培训讲师评定资格方案

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: