组合数学讲义
n 1 n-1 n n-1 n-2 2
2 r2 r ran= n为奇数:+ + 0 1 2 n-1 2
分两种情况:当n为偶数时,令n=2m,则
n 1 n 2
= =m-1 2 2
m
2m k k
an= k r
k 0
2m m 1 2m k k m m= 0 + k r+ m r k 1 2m m 1 2m k 1 k
r = 0 + k k 1
m 1
2m k 1 k m m
+ k 1 r+ m r
k 1
前两项求和:
2m m 1 2m k 1 km 1 2m k 1 k
r r = 0 kk k 1 k 0
n 1
2
k 0
n 1 k k
r an 1 k
后两项求和:
m 1 m 1 2m j 2 j
r r r+r j m 1 j 0
m 2
2m 2
=r jj 0
m 1j j
r=r
n 2 2
j 0
n 2
j j j
r=ran 2
an=an 1+ran 2