数值分析第五版答案(李庆扬)
h3 0.53 0.45 0.08,及(8.10)式 j
hjhj 1 hj
, j
hj 1hj 1 hj
,(j 1, ,n 1)
可知, 1
h1h20.0990.062
, 2 ,
h0 h10.05 0.0914h1 h20.09 0.065
3 1
h30.084 ,
h2 h30.06 0.087
h0h10.0550.093
, 2 ,
h0 h10.05 0.0914h1 h20.09 0.065h20.063
,
h2 h30.06 0.087
3
由(8.11)式gj 3( jf[xj 1,xj] jf[xj,xj 1])(j 1, n 1)可知,
9f(x1) f(x0)5f(x2) f(x1)
g1 3( 1f[x0,x1] 1f[x1,x2]) 3[ ]
14x1 x014x2 x190.5477 0.500050.6245 0.5477
3 ( )
140.30 0.25140.39 0.309477576819279 3 ( ) 2.7541
14500149007000g2 3( 2f[x1,x2] 2f[x2,x3]) 3[
2f(x2) f(x1)3f(x3) f(x2)
]
5x2 x15x3 x2
。
20.6245 0.547730.6708 0.6245
3 ( )
50.39 0.3050.45 0.39276834634 256 3 463 3 ( ) 2.413
590056001000g3 3( 3f[x2,x3] 3f[x3,x4]) 3[
。
4f(x3) f(x2)3f(x4) f(x3)
]
7x3 x27x4 x3
40.6708 0.624530.7280 0.6708
3 ( )
70.45 0.3970.53 0.45
446334724 463 9 1181457 3 ( ) 2.0814
760078001400700
。从而
5
209 14 2.7541 1.0000 2.1112 m1 14
23 2m 2.413 2.4131)矩阵形式为: ,解得 2 5 5 1.7871 3m3 42.0814 0.6868 02 7 7