数值分析第五版答案(李庆扬)
m1 0.9078 n m 0.8278 2 ,从而S(x) [yj j(x) mj j(x)]。
j 0
0.6570 m3
2)此为自然边界条件,故
g0 3f[x0,x1] 3
f(x1) f(x0)0.5477 0.5000477
3 3 2.862;
x1 x00.30 0.25500f(xn) f(xn 1)0.7280 0.6708572
3 3 2.145,
xn xn 10.53 0.45800
gn 3f[xn 1,xn] 3
2 9 14
矩阵形式为: 0
0 0
n
005201423
255402
7
4
00
7
1
0
0 m0 2.862 m 12.7541
0 m2 2.413 ,可以解得
2.081m 43 3
7 m4 2.145 2
m0 m 1
m2 ,从而 m3 m 4
S(x) [yj j(x) mj j(x)]。
j 0
25、若f(x) C2[a,b],S(x)是三次样条函数,证明
1) [f (x)]2dx [S (x)]2dx [f (x) S (x)]2dx 2 S (x)[f (x) S (x)]dx;
a
a
a
a
b
b
b
b
2)若f(xi) S(xi)(i 0,1, ,n),式中xi为插值节点,且a x0 x1 xn b 则 S (x)[f (x) S (x)]dx S (b)[f (b) S (b)] S (a)[f (a) S (a)]。
ab
b
a
[f (x) S (x)]2dx 2 S (x)[f (x) S (x)]dx
a
ba
b
[f (x) S (x)]2 2S (x)[f (x) S (x)]dx
[解]1) {[f (x) S (x)] 2S (x)}[f (x) S (x)]dx
a
b
。
[f (x) S (x)][f (x) S (x)]dx [f (x)]2 [S (x)]2dx
a
a
bb
[f (x)]2dx [S (x)]2dx
a
a
bb
2)由题意可知,S (x) A,x a,b ,所以